Pis an n * d matrix containing nd-dimensional samples. Pin some areas several times denser than others. I want to choose a subset Pin which the distance between any pairs of samples will be greater than d0, and I need it to be distributed throughout the area. All samples have the same priority, and there is no need to optimize anything (for example, coverage area or the sum of pairwise distances).
Here is an example of code that does this, but it is very slow. I need a more efficient code, as I need to call it several times.
%% generating sample data
n_4 = 1000; n_2 = n_4*2;n = n_4*4;
x1=[ randn(n_4, 1)*10+30; randn(n_4, 1)*3 + 60];
y1=[ randn(n_4, 1)*5 + 35; randn(n_4, 1)*20 + 80 ];
x2 = rand(n_2, 1)*(max(x1)-min(x1)) + min(x1);
y2 = rand(n_2, 1)*(max(y1)-min(y1)) + min(y1);
P = [x1,y1;x2, y2];
%% eliminating close ones
tic
d0 = 1.5;
D = pdist2(P, P);D(1:n+1:end) = inf;
E = zeros(n, 1); % eliminated ones
for i=1:n-1
if ~E(i)
CloseOnes = (D(i,:)<d0) & ((1:n)>i) & (~E');
E(CloseOnes) = 1;
end
end
P2 = P(~E, :);
toc
%% plotting samples
subplot(121); scatter(P(:, 1), P(:, 2)); axis equal;
subplot(122); scatter(P2(:, 1), P2(:, 2)); axis equal;

Edit: how large should the subset be?
j_random_hacker, , P(1, :) , . ! , . : " m samples, ". m=n . , , .