Grouped data mode in (py) Spark

I have a DataFrame spark with multiple columns. I would like to group the rows based on one column, and then find the second column mode for each group. Working with pandas DataFrame, I would do something like this:

rand_values = np.random.randint(max_value,
                                size=num_values).reshape((num_values/2, 2))
rand_values = pd.DataFrame(rand_values, columns=['x', 'y'])
rand_values['x'] = rand_values['x'] > max_value/2
rand_values['x'] = rand_values['x'].astype('int32')

print(rand_values)
##    x  y
## 0  0  0
## 1  0  4
## 2  0  1
## 3  1  1
## 4  1  2

def mode(series):
    return scipy.stats.mode(series['y'])[0][0]

rand_values.groupby('x').apply(mode)
## x
## 0    4
## 1    1
## dtype: int64

Inside pyspark, I can find the single column mode doing

df = sql_context.createDataFrame(rand_values)

def mode_spark(df, column):
    # Group by column and count the number of occurrences
    # of each x value
    counts = df.groupBy(column).count()

    # - Find the maximum value in the 'counts' column
    # - Join with the counts dataframe to select the row
    #   with the maximum count
    # - Select the first element of this dataframe and
    #   take the value in column
    mode = counts.join(
        counts.agg(F.max('count').alias('count')),
        on='count'
    ).limit(1).select(column)

    return mode.first()[column]

mode_spark(df, 'x')
## 1
mode_spark(df, 'y')
## 1

I do not understand how to apply this function to grouped data. If it is not possible to apply this logic to a DataFrame, is it possible to achieve the same effect in other ways?

Thank you in advance!

+4
source share
1 answer

Solution proposed by null 323.

Original solution: fooobar.com/questions/313638 / ...

(x, y).

counts = df.groupBy(['x', 'y']).count().alias('counts')
counts.show()
## +---+---+-----+
## |  x|  y|count|
## +---+---+-----+
## |  0|  1|    2|
## |  0|  3|    2|
## |  0|  4|    2|
## |  1|  1|    3|
## |  1|  3|    1|
## +---+---+-----+

1: "", , . , "count".

result = (counts
          .groupBy('x')
          .agg(F.max(F.struct(F.col('count'),
                              F.col('y'))).alias('max'))
          .select(F.col('x'), F.col('max.y'))
         )
result.show()
## +---+---+
## |  x|  y|
## +---+---+
## |  0|  4|
## |  1|  1|
## +---+---+

2: , "" "count". .

win = Window().partitionBy('x').orderBy(F.col('count').desc())
result = (counts
          .withColumn('row_num', F.rowNumber().over(win))
          .where(F.col('row_num') == 1)
          .select('x', 'y')
         )
result.show()
## +---+---+
## |  x|  y|
## +---+---+
## |  0|  1|
## |  1|  1|
## +---+---+

- , . , .

+7

All Articles