tf.gradients()
:
grads = tf.gradients(<a tensor>, <another tensor that doesn't depend on the first>)
, tf.gradients , , , print
print grads
[None] None .
:
results = sess.run(grads)
None, , .
:
grads = tf.gradients(<a tensor>, <a related tensor>)
print grads
- :
Tensor("gradients_1/sub_grad/Reshape:0", dtype=float32)
:
results = sess.run(grads, {<appropriate feeds>})
print results
-
[array([[ 4.97156498e-06, 7.87349381e-06, 9.25197037e-06, ...,
8.72526925e-06, 6.78442757e-06, 3.85240173e-06],
[ 7.72772819e-06, 9.26370740e-06, 1.19129227e-05, ...,
1.27088233e-05, 8.76379818e-06, 6.00637532e-06],
[ 9.46506498e-06, 1.10620931e-05, 1.43903117e-05, ...,
1.40718612e-05, 1.08670165e-05, 7.12365863e-06],
...,
[ 1.03536004e-05, 1.03090524e-05, 1.32107480e-05, ...,
1.40605653e-05, 1.25974075e-05, 8.90011415e-06],
[ 9.69486427e-06, 8.18045282e-06, 1.12702282e-05, ...,
1.32554378e-05, 1.13317501e-05, 7.74569162e-06],
[ 5.61043908e-06, 4.93397192e-06, 6.33513537e-06, ...,
6.26539259e-06, 4.52598442e-06, 4.10689108e-06]], dtype=float32)]