Optimization Issues Using Barnes-Hut to Place a Graph

I am trying to solve a Force-Directed / Barnes-Hut chart problem in a graphical visualization application. I have checked so far the creation of the octets, and it looks correct (the tree is represented by fields and circles - my nodes in the graph): Quadtree test My fields are as Quadtreefollows:

class Quadtree
{
    public:
        int level;
        Quadtree* trees[2][2][2];
        glm::vec3 vBoundriesBox[8];
        glm::vec3 center;
        bool leaf;
        float combined_weight = 0;
        std::vector<Element*> objects;
        //Addition methods/fields
    private:
    //Additional methods/fields
    protected:
}

This is how I add elements recursively to my quadrant:

#define MAX_LEVELS 5

void Quadtree::AddObject(Element* object)
{
    this->objects.push_back(object);
}

void Quadtree::Update()
{
    if(this->objects.size()<=1 || level > MAX_LEVELS)
    {
        for(Element* Element:this->objects)
        {
            Element->parent_group = this;
            this->combined_weight += Element->weight;
        }
        return;
    }

    if(leaf)
    {
        GenerateChildren();
        leaf = false;
    }

    while (!this->objects.empty())
    {
        Element* obj = this->objects.back();
        this->objects.pop_back();
        if(contains(trees[0][0][0],obj))
        {
            trees[0][0][0]->AddObject(obj);
            trees[0][0][0]->combined_weight += obj->weight;
        } else if(contains(trees[0][0][1],obj))
        {
            trees[0][0][1]->AddObject(obj);
            trees[0][0][1]->combined_weight += obj->weight;
        } else if(contains(trees[0][1][0],obj))
        {
            trees[0][1][0]->AddObject(obj);
            trees[0][1][0]->combined_weight += obj->weight;
        } else if(contains(trees[0][1][1],obj))
        {
            trees[0][1][1]->AddObject(obj);
            trees[0][1][1]->combined_weight += obj->weight;
        } else if(contains(trees[1][0][0],obj))
        {
            trees[1][0][0]->AddObject(obj);
            trees[1][0][0]->combined_weight += obj->weight;
        } else if(contains(trees[1][0][1],obj))
        {
            trees[1][0][1]->AddObject(obj);
            trees[1][0][1]->combined_weight += obj->weight;
        } else if(contains(trees[1][1][0],obj))
        {
            trees[1][1][0]->AddObject(obj);
            trees[1][1][0]->combined_weight += obj->weight;
        } else if(contains(trees[1][1][1],obj))
        {
            trees[1][1][1]->AddObject(obj);
            trees[1][1][1]->combined_weight += obj->weight;
        }
    }

    for(int i=0;i<2;i++)
    {
        for(int j=0;j<2;j++)
        {
            for(int k=0;k<2;k++)
            {
                trees[i][j][k]->Update();
            }
        }
    }
}

bool Quadtree::contains(Quadtree* child, Element* object)
{
    if(object->pos[0] >= child->vBoundriesBox[0][0] && object->pos[0] <= child->vBoundriesBox[1][0] &&
       object->pos[1] >= child->vBoundriesBox[4][1] && object->pos[1] <= child->vBoundriesBox[0][1] &&
       object->pos[2] >= child->vBoundriesBox[3][2] && object->pos[2] <= child->vBoundriesBox[0][2])
        return true;
    return false;
}

As you can see in the figure, the nodes are very grouped. I tried to figure out how to fix my repulsive force calculations, but it still doesn't work, and the result is still the same.

So how do I calculate it:

First, in my main file, I run a loop through all nodes of the graph:

for(auto& n_el:graph->node_vector)
{
    tree->CheckNode(&n_el);
}

Further in my class Qyadtree( tree- this is a class object), I have this recursive method:

void Quadtree::CheckNode(Node* node)
{
    glm::vec3 diff = this->center - node->pos;

    double distance_sqr = (diff.x * diff.x) + (diff.y*diff.y) + (diff.z*diff.z);
    double width_sqr = (vBoundriesBox[1][0] - vBoundriesBox[0][0]) * (vBoundriesBox[1][0] - vBoundriesBox[0][0]);
    if(width_sqr/distance_sqr < 10.0f || leaf)
    {
        if(leaf)
        {
            for(auto& n: objects)
            {
                n->Repulse(&objects);
            }
        }
        else
        {
            node->RepulseWithGroup(this);
        }
    }
    else
    {
        for(int i=0; i<2; i++)
        {
            for(int j=0; j<2; j++)
            {
                for(int k=0; k<2; k++)
                {
                    trees[i][j][k]->CheckNode(node);
                }
            }
        }
    }
}

, , node :

double Node::Repulse(std::vector<Node*>* nodes)
{
    double dx;
    double dy;
    double dz;
    double force = 0.0;
    double distance_between;
    double delta_weights;
    double temp;
    for(auto& element_node:*nodes)
    {
        if(this->name == element_node->name)
        {
            continue;
        }
        if(!element_node->use) continue;
        delta_weights = 0.5 + abs(this->weight - element_node->weight);
        dx = this->pos[0] - element_node->pos[0];
        dy = this->pos[1] - element_node->pos[1];
        dz = this->pos[2] - element_node->pos[2];
        distance_between = dx * dx + dy * dy + dz * dz;
        force = 0.19998 * delta_weights/(distance_between * distance_between);
        temp = std::min(1.0, force);
        if(temp<0.0001)
        {
            temp = 0;
        }
        double mx = temp * dx;
        double my = temp * dy;
        double mz = temp * dz;
        this->pos[0] += mx;
        this->pos[1] += my;
        this->pos[2] += mz;
        element_node->pos[0] -= mx;
        element_node->pos[1] -= my;
        element_node->pos[2] -= mz;
    }
}

void Node::RepulseWithGroup(Quadtree* tree)
{
    double dx;
    double dy;
    double dz;
    double force = 0.0;
    double distance_between;
    double delta_weights;
    double temp;

    delta_weights = 0.5 + abs(this->weight - tree->combined_weight);
    dx = this->pos[0] - tree->center.x;
    dy = this->pos[1] - tree->center.y;
    dz = this->pos[2] - tree->center.z;
    distance_between = dx * dx + dy * dy + dz * dz;
    force = 0.19998 * delta_weights/(distance_between * distance_between);
    temp = std::min(1.0, force);
    if(temp<0.0001)
    {
        temp = 0;
    }
    double mx = temp * dx;
    double my = temp * dy;
    double mz = temp * dz;
    this->pos[0] += mx + this->parent_group->repulsion_force.x;
    this->pos[1] += my + this->parent_group->repulsion_force.y;
    this->pos[2] += mz + this->parent_group->repulsion_force.z;
}

, :

if(width_sqr/distance_sqr < 10.0f || leaf)
    {
        if(leaf)
        {
            for(auto& n: objects)
            {
                n->Repulse(&objects);
            }
        }
        else
        {
            node->RepulseWithGroup(this);
        }
    }

, , . , , . .

, ( , octree ) - . , / : Plot , , , O(n^2), Barnes-Hut O(nlogn). , nlogn.

- , ? , , - .

EDIT:

@Ilmari Karonen, MAX_LEVELS 5, 20, 50, 100. . -, , ( ) times

+4
1

,

#define MAX_LEVELS 5

. , O (n & sup2;). MAX_LEVELS ( , , 10 20) , .

, , . , .


, . , , , .

center Quadtree, , . , - .

( , , center, node , , , .)

, , , , , , , . node , , , position ( reset ).

, , , , Quadtree, , ?:)

+3

All Articles