Use sum:
import pandas as pd
import numpy as np
np.random.seed(1)
df1 = pd.DataFrame(np.random.randint(10, size=(3,5)))
df1.columns = list('ABCDE')
print df1
A B C D E
0 5 8 9 5 0
1 0 1 7 6 9
2 2 4 5 2 4
df1['sum'] = df1.sum(axis=1)
print df1
A B C D E sum
0 5 8 9 5 0 27
1 0 1 7 6 9 23
2 2 4 5 2 4 17
Another solution for creating new columns is assign:
print df1.assign(sum=df1.sum(axis=1))
A B C D E sum
0 5 8 9 5 0 27
1 0 1 7 6 9 23
2 2 4 5 2 4 17
source
share