I studied how to optimize my code, and ran a method pandas .at. In the documentation
Tag-based quick scan accessory
Similar to loc when providing scalar shortcut based queries. You can also set these indexes.
So, I ran a few samples:
Customization
import pandas as pd
import numpy as np
from string import letters, lowercase, uppercase
lt = list(letters)
lc = list(lowercase)
uc = list(uppercase)
def gdf(rows, cols, seed=None):
"""rows and cols are what you'd pass
to pd.MultiIndex.from_product()"""
gmi = pd.MultiIndex.from_product
df = pd.DataFrame(index=gmi(rows), columns=gmi(cols))
np.random.seed(seed)
df.iloc[:, :] = np.random.rand(*df.shape)
return df
seed = [3, 1415]
df = gdf([lc, uc], [lc, uc], seed)
print df.head().T.head().T
df as follows:
a
A B C D E
a A 0.444939 0.407554 0.460148 0.465239 0.462691
B 0.032746 0.485650 0.503892 0.351520 0.061569
C 0.777350 0.047677 0.250667 0.602878 0.570528
D 0.927783 0.653868 0.381103 0.959544 0.033253
E 0.191985 0.304597 0.195106 0.370921 0.631576
Lets use .atand .locand guarantee that I get the same
print "using .loc", df.loc[('a', 'A'), ('c', 'C')]
print "using .at ", df.at[('a', 'A'), ('c', 'C')]
using .loc 0.37374090276
using .at 0.37374090276
Check speed with .loc
%%timeit
df.loc[('a', 'A'), ('c', 'C')]
10000 loops, best of 3: 180 µs per loop
Testing Speed Using .at
%%timeit
df.at[('a', 'A'), ('c', 'C')]
The slowest run took 6.11 times longer than the fastest. This could mean that an intermediate result is being cached.
100000 loops, best of 3: 8 µs per loop
It looks like a huge increase in speed. Even at the caching stage, it 6.11 * 8is much faster than180
Question
.at? . , .loc, . :
sdf = gdf([lc[:2]], [uc[:2]], seed)
print sdf.loc[:, :]
A B
a 0.444939 0.407554
b 0.460148 0.465239
as print sdf.at[:, :] TypeError: unhashable type
, , , .
, , .at?