If you decide it:
p = p0 + (p1 - p0) * s + (p2 - p0) * t
s = <0.0,1.0>
t = <0.0,1.0>
s+t<=1.0
Competing with this system:
p.a = p0.a + (p1.a - p0.a) * s + (p2.a - p0.a) * t
p.b = p0.b + (p1.b - p0.b) * s + (p2.b - p0.b) * t
----------------------------------------------------
You have two algebraic options:
I. t = (p.a - p0.a - (p1.a - p0.a) * s) / (p2.a - p0.a)
II. p.b = p0.b + (p1.b - p0.b) * s + (p2.b - p0.b) * t
----------------------------------------------------
II. p.b = p0.b + (p1.b - p0.b) * s + (p2.b - p0.b) * (p.a - p0.a - (p1.a - p0.a) * s) / (p2.a - p0.a)
II. s = (p.b-p0.b) / ( (p1.b-p0.b) + ( (p2.b-p0.b)*(p.a-p0.a-(p1.a-p0.a)/(p2.a-p0.a) ) )
...
and
I. s = (p.a - p0.a - (p2.a - p0.a) * t) / (p1.a - p0.a)
II. p.b = p0.b + (p1.b - p0.b) * s + (p2.b - p0.b) * t
...
Which gives you 2 options for an algebraic solution. To ensure stability, you must share with large enough values. Therefore, you must select the axes ( a,b→ x,y) and the order of the points so that you are not divided by zero or small values.
To avoid this, you can use a matrix approach
p.a = p0.a + (p1.a - p0.a) * s + (p2.a - p0.a) * t
p.b = p0.b + (p1.b - p0.b) * s + (p2.b - p0.b) * t
--------------------------------------------------
|p.a| | (p1.a - p0.a) , (p2.a - p0.a) , p0.a | | s |
|p.b| = | (p1.b - p0.b) , (p2.b - p0.b) , p0.b | * | t |
| 1 | | 0 , 0 , 1 | | 1 |
--------------------------------------------------------
| s | | (p1.a - p0.a) , (p2.a - p0.a) , p0.a | | p.a |
| t | = inverse | (p1.b - p0.b) , (p2.b - p0.b) , p0.b | * | p.b |
| 1 | | 0 , 0 , 1 | | 1 |
------------------------------------------------------------------
Also here you got more options for axis order, point order, so that the inverse matrix is computable. If you use the sublimit approach for the inverse matrix solution, then the only thing that matters is the final division step. Thus, you can select orders until you get a nonzero determinant.