I am trying to put together two layers tf.nn.conv2d_transpose()to approximate the tensor. It works fine when feeding forward, but I get an error message during the back-propagation:
ValueError: Incompatible shapes for broadcasting: (8, 256, 256, 24) and (8, 100, 100, 24).
Basically, I just set the output of the first conv2d_transposeas the input of the second:
convt_1 = tf.nn.conv2d_transpose(...)
convt_2 = tf.nn.conv2d_transpose(conv_1)
Using only one conv2d_transpose, everything works fine. An error only occurs if several conv2d_transposeare stacked together.
I am not sure of the correct way to implement multiple levels conv2d_transpose. Any advice on how to do this would be greatly appreciated.
Here is a little code that replicates the error:
import numpy as np
import tensorflow as tf
IMAGE_HEIGHT = 256
IMAGE_WIDTH = 256
CHANNELS = 1
batch_size = 8
num_labels = 2
in_data = tf.placeholder(tf.float32, shape=(batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, CHANNELS))
labels = tf.placeholder(tf.int32, shape=(batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 1))
w0 = tf.Variable(tf.truncated_normal([3, 3, CHANNELS, 32]))
b0 = tf.Variable(tf.zeros([32]))
conv_0 = tf.nn.relu(tf.nn.conv2d(in_data, w0, [1, 2, 2, 1], padding='SAME') + b0)
print("Convolution 0:", conv_0)
wt1 = tf.Variable(tf.truncated_normal([3, 3, 24, 32]))
convt_1 = tf.nn.sigmoid(
tf.nn.conv2d_transpose(conv_0,
filter=wt1,
output_shape=[batch_size, 100, 100, 24],
strides=[1, 1, 1, 1]))
print("Deconvolution 1:", convt_1)
wt2 = tf.Variable(tf.truncated_normal([3, 3, 2, 24]))
convt_2 = tf.nn.sigmoid(
tf.nn.conv2d_transpose(convt_1,
filter=wt2,
output_shape=[batch_size, IMAGE_HEIGHT, IMAGE_WIDTH, 2],
strides=[1, 1, 1, 1]))
print("Deconvolution 2:", convt_2)
logits = tf.reshape(convt_2, [-1, num_labels])
reshaped_labels = tf.reshape(labels, [-1])
cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits, reshaped_labels)
loss = tf.reduce_mean(cross_entropy)
optimizer = tf.train.GradientDescentOptimizer(0.5).minimize(loss)