I have code to calculate inside Set Set of Squared Error after clustering, which I basically took from Spark mllib source code.
When I run similar code using the spark API, it runs in many different (distributed) jobs and runs successfully. When I run my code on it (which should do the same as the Spark code), I get an error. Any ideas why?
Here is the code:
import java.util.Arrays
import org.apache.spark.mllib.linalg.{Vectors, Vector}
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.linalg.distributed.RowMatrix
import org.apache.spark.rdd.RDD
import org.apache.spark.api.java.JavaRDD
import breeze.linalg.{axpy => brzAxpy, inv, svd => brzSvd, DenseMatrix => BDM, DenseVector => BDV,
MatrixSingularException, SparseVector => BSV, CSCMatrix => BSM, Matrix => BM}
val EPSILON = {
var eps = 1.0
while ((1.0 + (eps / 2.0)) != 1.0) {
eps /= 2.0
}
eps
}
def dot(x: Vector, y: Vector): Double = {
require(x.size == y.size,
"BLAS.dot(x: Vector, y:Vector) was given Vectors with non-matching sizes:" +
" x.size = " + x.size + ", y.size = " + y.size)
(x, y) match {
case (dx: DenseVector, dy: DenseVector) =>
dot(dx, dy)
case (sx: SparseVector, dy: DenseVector) =>
dot(sx, dy)
case (dx: DenseVector, sy: SparseVector) =>
dot(sy, dx)
case (sx: SparseVector, sy: SparseVector) =>
dot(sx, sy)
case _ =>
throw new IllegalArgumentException(s"dot doesn't support (${x.getClass}, ${y.getClass}).")
}
}
def fastSquaredDistance(
v1: Vector,
norm1: Double,
v2: Vector,
norm2: Double,
precision: Double = 1e-6): Double = {
val n = v1.size
require(v2.size == n)
require(norm1 >= 0.0 && norm2 >= 0.0)
val sumSquaredNorm = norm1 * norm1 + norm2 * norm2
val normDiff = norm1 - norm2
var sqDist = 0.0
val precisionBound1 = 2.0 * EPSILON * sumSquaredNorm / (normDiff * normDiff + EPSILON)
if (precisionBound1 < precision) {
sqDist = sumSquaredNorm - 2.0 * dot(v1, v2)
} else if (v1.isInstanceOf[SparseVector] || v2.isInstanceOf[SparseVector]) {
val dotValue = dot(v1, v2)
sqDist = math.max(sumSquaredNorm - 2.0 * dotValue, 0.0)
val precisionBound2 = EPSILON * (sumSquaredNorm + 2.0 * math.abs(dotValue)) /
(sqDist + EPSILON)
if (precisionBound2 > precision) {
sqDist = Vectors.sqdist(v1, v2)
}
} else {
sqDist = Vectors.sqdist(v1, v2)
}
sqDist
}
def findClosest(
centers: TraversableOnce[Vector],
point: Vector): (Int, Double) = {
var bestDistance = Double.PositiveInfinity
var bestIndex = 0
var i = 0
centers.foreach { center =>
var lowerBoundOfSqDist = Vectors.norm(center, 2.0) - Vectors.norm(point, 2.0)
lowerBoundOfSqDist = lowerBoundOfSqDist * lowerBoundOfSqDist
if (lowerBoundOfSqDist < bestDistance) {
val distance: Double = fastSquaredDistance(center, Vectors.norm(center, 2.0), point, Vectors.norm(point, 2.0))
if (distance < bestDistance) {
bestDistance = distance
bestIndex = i
}
}
i += 1
}
(bestIndex, bestDistance)
}
def pointCost(
centers: TraversableOnce[Vector],
point: Vector): Double =
findClosest(centers, point)._2
def clusterCentersIter: Iterable[Vector] =
clusterCenters.map(p => p)
def computeCostZep(indata: RDD[Vector]): Double = {
val bcCenters = indata.context.broadcast(clusterCenters)
indata.map(p => pointCost(bcCenters.value, p)).sum()
}
computeCostZep(projectedData)
I believe that I use all the same parallelization tasks as the spark, but this does not work for me. Any tips on distributing my code / help on why memory overflow occurs in my code would be very helpful
Here is a link to the source code in a spark that is very similar:
KMeansModel and KMeans
, :
val clusters = KMeans.train(projectedData, numClusters, numIterations)
val clusterCenters = clusters.clusterCenters
// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(projectedData)
println("Within Set Sum of Squared Errors = " + WSSSE)
:
org.apache.spark.SparkException: - : 1 94.0 4 , : 1.3 94.0 (TID 37663, ip-172-31-13-209.ec2.internal): java.lang.StackOverflowError at $iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$$$$$ c57ec8bf9b0d5f6161b97741d596ff0 $$$$ Wc $$ IWC IWC $$ $$ $$ IWC IWC IWC $$ $$ $$ IWC IWC IWC $$ $$ $$ IWC IWC IWC $$ $$ $$ IWC IWC IWC $$ $$ iwC $$ iwC.dot(: 226) at $iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$ iwC $$$$$$ c57ec8bf9b0d5f6161b97741d596ff0 $$$$ Wc $$ IWC $$ IWC IWC $$ $$ $$ IWC IWC IWC $$ $$ $$ IWC IWC IWC $$ $$ $$ IWC IWC IWC $$ $$ $$ IWC IWC IWC $$ $$ iwC.dot(: 226)
...
:
stacktrace: at org.apache.spark.scheduler.DAGScheduler.org $apache $spark $scheduler $DAGScheduler $$ failJobAndIndependentStages (DAGScheduler.scala: 1431) at org.apache.spark.scheduler.DAGScheduler $$ anonfun $abortStage $1.apply(DAGScheduler.scala: 1419) org.apache.spark.scheduler.DAGScheduler $$ anonfun $abortStage $1.apply(DAGScheduler.scala: 1418) scala.collection.mutable.ResizableArray $class.foreach(ResizableArray.scala: 59) scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala: 47) org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala: 1418) org.apache. spark.scheduler.DAGScheduler $$ anonfun $handleTaskSetFailed $1.apply(DAGScheduler.scala: 799) org.apache.spark.scheduler.DAGScheduler $$ anonfun $handleTaskSetFailed $1.apply(DAGScheduler.scala: 799) scala. Option.foreach(Option.scala: 236) org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala: 799) org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGSchedul er.scala: 1640) org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala: 1599) org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala: 1588) org.apache.spark.util.EventLoop $$ anon $1.run(EventLoop.scala: 48) org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala: 620) org.apache.spark.SparkContext.runJob(SparkContext.scala: 1832) org.apache.spark.SparkContext.runJob(SparkContext.scala: 1952) org.apache.spark.rdd.RDD $$ anonfun $fold $1.apply(RDD.scala: 1088) org.apache. spark.rdd.RDDOperationScope $.withScope(RDDOperationScope.scala: 150) org.apache.spark.rdd.RDDOperationScope $.withScope(RDDOperationScope.scala: 111) org.apache.spark.rdd.RDD.withScope(RDD. scala: 316) org.apache.spark.rdd.RDD.fold(RDD.scala: 1082) org.apache.spark.rdd.DoubleRDDFunctions $$ anonfun $sum $1.apply $mcD $sp (DoubleRDDFunctions.scala: 34) at org.apache.spark.rdd.DoubleRDDFunctions $$ anonfun $sum $1.apply(DoubleRDDFunctions.scala: 34) a t org.apache.spark.rdd.DoubleRDDFunctions $$ anonfun $sum $1.apply(DoubleRDDFunctions.scala: 34) org.apache.spark.rdd.RDDOperationScope $.withScope(RDDOperationScope.scala: 150) org.apache. spark.rdd.RDDOperationScope $.withScope(RDDOperationScope.scala: 111) org.apache.spark.rdd.RDD.withScope(RDD.scala: 316) org.apache.spark.rdd.DoubleRDDFunctions.sum(DoubleRDDFunctions.scala: 33)