What i understand already
I understand that the median of the median algorithm (I will denote it as MoM) is an algorithm with a high constant coefficient O (N). He finds the medians of k-groups (usually 5) and uses them as the next set of iterations to search for medians. After finding this value, the drill will be between 3 / 10n and 7 / 10n of the original set, where n is the number of iterations that were required to find one middle base case.
I keep getting segmentation error when I run this code for MoM, but I'm not sure why. I debugged this and I think the problem is what I'm calling medianOfMedian(medians, 0, medians.size()-1, medians.size()/2);. However, I thought it was logically great, since we had to recursively find the median by calling ourselves. Perhaps my base case is wrong? In the YogiBearian textbook on youtube (Stanford professor, link: https://www.youtube.com/watch?v=YU1HfMiJzwg ), he did not indicate any additional base case to take care of the O (N / 5) recursion operation in MoM.
Full code
Note. In the sentences, I added a basic example and used the .at () function with vectors.
static const int GROUP_SIZE = 5;
vector<int> findMedians(vector<int>& vec, int start, int end){
vector<int> medians;
for(int i = start; i <= end; i+= GROUP_SIZE){
std::sort(vec.begin()+i, min(vec.begin()+i+GROUP_SIZE, vec.end()));
medians.push_back(vec.at(min(i + (GROUP_SIZE/2), (i + end)/2)));
}
return medians;
}
int medianOfMedian(vector<int>& vec, int start, int end, int k){
vector<int> medians = findMedians(vec, start, end);
int pivotVal;
if(medians.size() == 1)
pivotVal = medians.at(0);
else
pivotVal = medianOfMedian(medians, 0, medians.size()-1, medians.size()/2);
int pivot = partitionHelper(vec, pivotVal, start, end);
cout << "After pivoting with the value " << pivot << " we get : " << endl;
for(int i = start; i < end; i++){
cout << vec.at(i) << ", ";
}
cout << "\n\n" << endl;
usleep(10000);
int length = pivot - start + 1;
if(k < length){
return medianOfMedian(vec, k, start, pivot-1);
}
else if(k == length){
return vec[k];
}
else{
return medianOfMedian(vec, k-length, pivot+1, end);
}
}
Some additional features to help unit test
Here are some unit tests that I wrote for these two functions. I hope they help.
vector<int> initialize(int size, int mod){
int arr[size];
for(int i = 0; i < size; i++){
arr[i] = rand() % mod;
}
vector<int> vec(arr, arr+size);
return vec;
}
void testFindMedians(){
const int SIZE = 36;
const int MOD = 20;
vector<int> vec = initialize(SIZE, MOD);
for(int i = 0; i < SIZE; i++){
cout << vec[i] << ", ";
}
cout << "\n\n" << endl;
vector<int> medians = findMedians(vec, 0, SIZE-1);
cout << "The 5-sorted version: " << endl;
for(int i = 0; i < SIZE; i++){
cout << vec[i] << ", ";
}
cout << "\n\n" << endl;
cout << "The medians extracted: " << endl;
for(int i = 0; i < medians.size(); i++){
cout << medians[i] << ", ";
}
cout << "\n\n" << endl;
}
void testMedianOfMedian(){
const int SIZE = 30;
const int MOD = 70;
vector<int> vec = initialize(SIZE, MOD);
cout << "Given array : " << endl;
for(int i = 0; i < SIZE; i++){
cout << vec[i] << ", ";
}
cout << "\n\n" << endl;
int median = medianOfMedian(vec, 0, vec.size()-1, vec.size()/2);
cout << "\n\nThe median is : " << median << endl;
cout << "As opposed to sorting and then showing the median... : " << endl;
std::sort(vec.begin(), vec.end());
cout << "sorted array : " << endl;
for(int i = 0; i < SIZE; i++){
if(i == SIZE/2)
cout << "**";
cout << vec[i] << ", ";
}
cout << "Median : " << vec[SIZE/2] << endl;
}
,
Given array :
7, 49, 23, 48, 20, 62, 44, 8, 43, 29, 20, 65, 42, 62, 7, 33, 37, 39, 60, 52, 53, 19, 29, 7, 50, 3, 69, 58, 56, 65,
After pivoting with the value 5 we get :
23, 29, 39, 42, 43,
After pivoting with the value 0 we get :
39,
Segmentation Fault: 11
, , . , ( ).
: , , quickSelect .
, , MVCE, !
EDIT: , . , - , , 0 -1 , . .