I wrote a class that receives a DataFrame, performs some calculations, and can export the results. Dataframes are generated by a list of keys. I know that now I am doing this very inefficiently:
var l = List(34, 32, 132, 352)
l.foreach{i =>
val data:DataFrame = DataContainer.getDataFrame(i)
val x = new MyClass(data)
x.setSettings(...)
x.calcSomething()
x.saveResults()
}
I think the foreach in the Scala list is not parallel, so how can I avoid using foreach here? Computing DataFrames can happen in parallel, since the calculation results are NOT entered for the next DataFrame - how can I implement this?
Thank you very much!
__ edit:
what i tried to do:
val l = List(34, 32, 132, 352)
var l_DF:List[DataFrame] = List()
l.foreach{ i =>
DataContainer.getDataFrame(i)::l
}
val rdd:DataFrame = sc.parallelize(l)
rdd.foreach(data =>
val x = new MyClass(data)
)
but gives
Invalid tree; null:
null
edit 2: Okay, I don’t understand how everything works under the hood ....
1) Everything works fine when I execute this in a spark shell
spark-shell –driver-memory 10g
var l = List(34, 32, 132, 352)
l.foreach{i =>
val data:DataFrame = AllData.where($"a" === i)
val x = new MyClass(data)
x.calcSomething()
}
2) Error when I start the same with
spark-shell --master yarn-client --num-executors 10 –driver-memory 10g
// same code as above
java.util.concurrent.RejectedExecutionException: Task scala.concurrent.impl.CallbackRunnable@7b600fed rejected from java.util.concurrent.ThreadPoolExecutor@1431127[Terminated, pool size = 0, active threads = 0, queued tasks = 0, completed tasks = 1263]
at java.util.concurrent.ThreadPoolExecutor$AbortPolicy.rejectedExecution(ThreadPoolExecutor.java:2047)
at java.util.concurrent.ThreadPoolExecutor.reject(ThreadPoolExecutor.java:823)
at java.util.concurrent.ThreadPoolExecutor.execute(ThreadPoolExecutor.java:1369)
at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133)
at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
at scala.concurrent.Promise$class.complete(Promise.scala:55)
at scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:153)
at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324)
at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
at org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293)
at scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:133)
at scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40)
at scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248)
at scala.concurrent.Promise$class.complete(Promise.scala:55)
at scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:153)
at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235)
at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32)
3) when I try to parallelize it, I also get an error
spark-shell --master yarn-client --num-executors 10 –driver-memory 10g
var l = List(34, 32, 132, 352).par
scala.collection.parallel.CompositeThrowable: Multiple exceptions thrown during a parallel computation: java.lang.IllegalStateException: SparkContext has been shutdown
org.apache.spark.SparkContext.runJob(SparkContext.scala:1816)
org.apache.spark.SparkContext.runJob(SparkContext.scala:1837)
org.apache.spark.SparkContext.runJob(SparkContext.scala:1850)
org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:215)
org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:207)
org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1385)
org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1385)
org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:1903)
org.apache.spark.sql.DataFrame.collect(DataFrame.scala:1384)
.
.
.
java.lang.IllegalStateException: Cannot call methods on a stopped SparkContext org.apache.spark.SparkContext.org$apache$spark$SparkContext$$assertNotStopped(SparkContext.scala:104)
org.apache.spark.SparkContext.broadcast(SparkContext.scala:1320)
org.apache.spark.sql.execution.datasources.DataSourceStrategy$.apply(DataSourceStrategy.scala:104)
org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58)
org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:58)
scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:59)
org.apache.spark.sql.catalyst.planning.QueryPlanner.planLater(QueryPlanner.scala:54)
org.apache.spark.sql.execution.SparkStrategies$EquiJoinSelection$.makeBroadcastHashJoin(SparkStrategies.scala:92)
org.apache.spark.sql.execution.SparkStrategies$EquiJoinSelection$.apply(SparkStrategies.scala:104)
10 , 4 . . .