, nan y. , nessuno, , .
sigmoid 1, ! relu , initiate W1 W2 , 0.1135. relu sigmoid, W1 W2.
import tensorflow as tf
x = tf.placeholder(tf.float32, [None, 784])
with tf.variable_scope('layer1'):
W1 = tf.get_variable('w1',[784,200],
initializer=tf.random_normal_initializer())
b1 = tf.get_variable('b1',[1,],
initializer=tf.constant_initializer(0.0))
y1 = tf.nn.sigmoid(tf.matmul(x, W1) + b1)
with tf.variable_scope('layer2'):
W2 = tf.get_variable('w2',[200,10],
initializer= tf.random_normal_nitializer())
b2 = tf.get_variable('b2',[1,],
initializer=tf.constant_initializer(0.0))
y2 = tf.nn.softmax(tf.matmul(y1, W2) + b2)
y = y2
y_ = tf.placeholder(tf.float32, [None, 10])
, . 2 (), , , - , 1, , - (sth)*W2^T*W1^T, W1, W2 , , , , .
UPDATE
Quora Ofir .
Xavier . ( ) . "" 0, 0.