This is a continuation of this problem:
Reduction of integer algorithms
The following is a solution to the grandmaster’s problem:
#include <cstdio> #include <algorithm> #include <functional> using namespace std; const int MAXN = 100100; const int MAXP = 10001000; int p[MAXP]; void init() { for (int i = 2; i < MAXP; ++i) { if (p[i] == 0) { for (int j = i; j < MAXP; j += i) { p[j] = i; } } } } void f(int n, vector<int>& a, vector<int>& x) { a.resize(n); vector<int>(MAXP, 0).swap(x); for (int i = 0; i < n; ++i) { scanf("%d", &a[i]); for (int j = a[i]; j > 1; j /= p[j]) { ++x[p[j]]; } } } void g(const vector<int>& v, vector<int> w) { for (int i: v) { for (int j = i; j > 1; j /= p[j]) { if (w[p[j]] > 0) { --w[p[j]]; i /= p[j]; } } printf("%d ", i); } puts(""); } int main() { int n, m; vector<int> a, b, x, y, z; init(); scanf("%d%d", &n, &m); f(n, a, x); f(m, b, y); printf("%d %d\n", n, m); transform(x.begin(), x.end(), y.begin(), insert_iterator<vector<int> >(z, z.end()), [](int a, int b) { return min(a, b); }); g(a, z); g(b, z); return 0; }
I don’t understand how it works. Can anyone explain this?
Equivalence is as follows:
a is the numerator vector of length n b is the denominator vector of length m
c ++ math algorithm c ++ 11
Andrew Tomazos
source share