Here is some code that might help.
from __future__ import division import numpy as np def find_transition_times(t, y, threshold): """ Given the input signal `y` with samples at times `t`, find the times where `y` increases through the value `threshold`. `t` and `y` must be 1-D numpy arrays. Linear interpolation is used to estimate the time `t` between samples at which the transitions occur. """ # Find where y crosses the threshold (increasing). lower = y < threshold higher = y >= threshold transition_indices = np.where(lower[:-1] & higher[1:])[0] # Linearly interpolate the time values where the transition occurs. t0 = t[transition_indices] t1 = t[transition_indices + 1] y0 = y[transition_indices] y1 = y[transition_indices + 1] slope = (y1 - y0) / (t1 - t0) transition_times = t0 + (threshold - y0) / slope return transition_times def periods(t, y, threshold): """ Given the input signal `y` with samples at times `t`, find the time periods between the times at which the signal `y` increases through the value `threshold`. `t` and `y` must be 1-D numpy arrays. """ transition_times = find_transition_times(t, y, threshold) deltas = np.diff(transition_times) return deltas if __name__ == "__main__": import matplotlib.pyplot as plt # Time samples t = np.linspace(0, 50, 501) # Use a noisy time to generate a noisy y. tn = t + 0.05 * np.random.rand(t.size) y = 0.6 * ( 1 + np.sin(tn) + (1./3) * np.sin(3*tn) + (1./5) * np.sin(5*tn) + (1./7) * np.sin(7*tn) + (1./9) * np.sin(9*tn)) threshold = 0.5 deltas = periods(t, y, threshold) print "Measured periods at threshold %g:" % threshold print deltas print "Min: %.5g" % deltas.min() print "Max: %.5g" % deltas.max() print "Mean: %.5g" % deltas.mean() print "Std dev: %.5g" % deltas.std() trans_times = find_transition_times(t, y, threshold) plt.plot(t, y) plt.plot(trans_times, threshold * np.ones_like(trans_times), 'ro-') plt.show()
Exit:
Measured periods at threshold 0.5: [ 6.29283207 6.29118893 6.27425846 6.29580066 6.28310224 6.30335003] Min: 6.2743 Max: 6.3034 Mean: 6.2901 Std dev: 0.0092793

You can use numpy.histogram and / or matplotlib.pyplot.hist to further analyze the array returned by periods(t, y, threshold) .
Warren weckesser
source share