This is an IMO combinatorial question.
I think for 7 elements you want to select 2 first and select 2 from the remaining 5, which gives a total of 210 combinations.
Thanks to Arun, who pointed out that the combination of 11 22 333 is the same as 22 11 333, we can conclude that since the first 2 elements are those that can change, our required number of combinations should be half 210, which is 105
library(gtools) # Let create all possible permutations of 7 elements which will be equal to 7! p <- permutations(7, 7, 1:7) head(p) ## [,1] [,2] [,3] [,4] [,5] [,6] [,7] ## [1,] 1 2 3 4 5 6 7 ## [2,] 1 2 3 4 5 7 6 ## [3,] 1 2 3 4 6 5 7 ## [4,] 1 2 3 4 6 7 5 ## [5,] 1 2 3 4 7 5 6 ## [6,] 1 2 3 4 7 6 5 # bin, sort and combine according to our binning vector c(1,1,2,2,3,3,3) rp <- t(apply(p, 1, FUN = function(x) as.numeric(sapply(split(x, c(1, 1, 2, 2, 3, 3, 3)), FUN = function(x) paste0(x[order(x)], collapse = ""))))) head(rp) ## [,1] [,2] [,3] ## [1,] 12 34 567 ## [2,] 12 34 567 ## [3,] 12 34 567 ## [4,] 12 34 567 ## [5,] 12 34 567 ## [6,] 12 34 567 # sort individual combinations before removing duplicates srp <- t(apply(rp, 1, function(x) x[order(x)])) head(srp) ## [,1] [,2] [,3] ## [1,] 12 34 567 ## [2,] 12 34 567 ## [3,] 12 34 567 ## [4,] 12 34 567 ## [5,] 12 34 567 ## [6,] 12 34 567 # remove duplicates srp[!duplicated(srp), ] ## [,1] [,2] [,3] ## [1,] 12 34 567 ## [2,] 12 35 467 ## [3,] 12 36 457 ## [4,] 12 37 456 ## [5,] 12 45 367 ## [6,] 12 46 357 ## [7,] 12 47 356 ## [8,] 12 56 347 ## [9,] 12 57 346 ## [10,] 12 67 345 ## [11,] 13 24 567 ## [12,] 13 25 467 ## [13,] 13 26 457 ## [14,] 13 27 456 ## [15,] 13 45 267 ## [16,] 13 46 257 ## [17,] 13 47 256 ## [18,] 13 56 247 ## [19,] 13 57 246 ## [20,] 13 67 245 ## [21,] 14 23 567 ## [22,] 14 25 367 ## [23,] 14 26 357 ## [24,] 14 27 356 ## [25,] 14 35 267 ## [26,] 14 36 257 ## [27,] 14 37 256 ## [28,] 14 56 237 ## [29,] 14 57 236 ## [30,] 14 67 235 ## [31,] 15 23 467 ## [32,] 15 24 367 ## [33,] 15 26 347 ## [34,] 15 27 346 ## [35,] 15 34 267 ## [36,] 15 36 247 ## [37,] 15 37 246 ## [38,] 15 46 237 ## [39,] 15 47 236 ## [40,] 15 67 234 ## [41,] 16 23 457 ## [42,] 16 24 357 ## [43,] 16 25 347 ## [44,] 16 27 345 ## [45,] 16 34 257 ## [46,] 16 35 247 ## [47,] 16 37 245 ## [48,] 16 45 237 ## [49,] 16 47 235 ## [50,] 16 57 234 ## [51,] 17 23 456 ## [52,] 17 24 356 ## [53,] 17 25 346 ## [54,] 17 26 345 ## [55,] 17 34 256 ## [56,] 17 35 246 ## [57,] 17 36 245 ## [58,] 17 45 236 ## [59,] 17 46 235 ## [60,] 17 56 234 ## [61,] 23 45 167 ## [62,] 23 46 157 ## [63,] 23 47 156 ## [64,] 23 56 147 ## [65,] 23 57 146 ## [66,] 23 67 145 ## [67,] 24 35 167 ## [68,] 24 36 157 ## [69,] 24 37 156 ## [70,] 24 56 137 ## [71,] 24 57 136 ## [72,] 24 67 135 ## [73,] 25 34 167 ## [74,] 25 36 147 ## [75,] 25 37 146 ## [76,] 25 46 137 ## [77,] 25 47 136 ## [78,] 25 67 134 ## [79,] 26 34 157 ## [80,] 26 35 147 ## [81,] 26 37 145 ## [82,] 26 45 137 ## [83,] 26 47 135 ## [84,] 26 57 134 ## [85,] 27 34 156 ## [86,] 27 35 146 ## [87,] 27 36 145 ## [88,] 27 45 136 ## [89,] 27 46 135 ## [90,] 27 56 134 ## [91,] 34 56 127 ## [92,] 34 57 126 ## [93,] 34 67 125 ## [94,] 35 46 127 ## [95,] 35 47 126 ## [96,] 35 67 124 ## [97,] 36 45 127 ## [98,] 36 47 125 ## [99,] 36 57 124 ## [100,] 37 45 126 ## [101,] 37 46 125 ## [102,] 37 56 124 ## [103,] 45 67 123 ## [104,] 46 57 123 ## [105,] 47 56 123