I am very interested in answering my question! It was easy, but it happens when you start with something with not-so-relevant documentation.
I tried to get the corners of a common rectangle that was not defined in the openCV implementation and therefore was almost impossible.
I followed the standard code in stackoverflow for the greatest area detection. and angles can be easily detected using the most approximate.
// convert the image to black and white
Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BGR2GRAY); //convert the image to black and white does (8 bit) Imgproc.Canny(imgSource, imgSource, 50, 50); //apply gaussian blur to smoothen lines of dots Imgproc.GaussianBlur(imgSource, imgSource, new org.opencv.core.Size(5, 5), 5); //find the contours List<MatOfPoint> contours = new ArrayList<MatOfPoint>(); Imgproc.findContours(imgSource, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE); double maxArea = -1; int maxAreaIdx = -1; Log.d("size",Integer.toString(contours.size())); MatOfPoint temp_contour = contours.get(0); //the largest is at the index 0 for starting point MatOfPoint2f approxCurve = new MatOfPoint2f(); MatOfPoint largest_contour = contours.get(0); //largest_contour.ge List<MatOfPoint> largest_contours = new ArrayList<MatOfPoint>(); //Imgproc.drawContours(imgSource,contours, -1, new Scalar(0, 255, 0), 1); for (int idx = 0; idx < contours.size(); idx++) { temp_contour = contours.get(idx); double contourarea = Imgproc.contourArea(temp_contour); //compare this contour to the previous largest contour found if (contourarea > maxArea) { //check if this contour is a square MatOfPoint2f new_mat = new MatOfPoint2f( temp_contour.toArray() ); int contourSize = (int)temp_contour.total(); MatOfPoint2f approxCurve_temp = new MatOfPoint2f(); Imgproc.approxPolyDP(new_mat, approxCurve_temp, contourSize*0.05, true); if (approxCurve_temp.total() == 4) { maxArea = contourarea; maxAreaIdx = idx; approxCurve=approxCurve_temp; largest_contour = temp_contour; } } } Imgproc.cvtColor(imgSource, imgSource, Imgproc.COLOR_BayerBG2RGB); sourceImage =Highgui.imread(Environment.getExternalStorageDirectory(). getAbsolutePath() +"/scan/p/1.jpg"); double[] temp_double; temp_double = approxCurve.get(0,0); Point p1 = new Point(temp_double[0], temp_double[1]); //Core.circle(imgSource,p1,55,new Scalar(0,0,255)); //Imgproc.warpAffine(sourceImage, dummy, rotImage,sourceImage.size()); temp_double = approxCurve.get(1,0); Point p2 = new Point(temp_double[0], temp_double[1]); // Core.circle(imgSource,p2,150,new Scalar(255,255,255)); temp_double = approxCurve.get(2,0); Point p3 = new Point(temp_double[0], temp_double[1]); //Core.circle(imgSource,p3,200,new Scalar(255,0,0)); temp_double = approxCurve.get(3,0); Point p4 = new Point(temp_double[0], temp_double[1]); // Core.circle(imgSource,p4,100,new Scalar(0,0,255)); List<Point> source = new ArrayList<Point>(); source.add(p1); source.add(p2); source.add(p3); source.add(p4); Mat startM = Converters.vector_Point2f_to_Mat(source); Mat result=warp(sourceImage,startM); return result;
and the function used to transform perspective is given below:
public Mat warp(Mat inputMat,Mat startM) { int resultWidth = 1000; int resultHeight = 1000; Mat outputMat = new Mat(resultWidth, resultHeight, CvType.CV_8UC4); Point ocvPOut1 = new Point(0, 0); Point ocvPOut2 = new Point(0, resultHeight); Point ocvPOut3 = new Point(resultWidth, resultHeight); Point ocvPOut4 = new Point(resultWidth, 0); List<Point> dest = new ArrayList<Point>(); dest.add(ocvPOut1); dest.add(ocvPOut2); dest.add(ocvPOut3); dest.add(ocvPOut4); Mat endM = Converters.vector_Point2f_to_Mat(dest); Mat perspectiveTransform = Imgproc.getPerspectiveTransform(startM, endM); Imgproc.warpPerspective(inputMat, outputMat, perspectiveTransform, new Size(resultWidth, resultHeight), Imgproc.INTER_CUBIC); return outputMat; }