The internal functions are really fast, but still not enough for a true cross-platform compiler-independent implementation of log2. So if someone is interested, here is the fastest, branchless, abstract algorithm similar to the processor that I need when I explore this topic myself.
const int tab64[64] = { 63, 0, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54, 33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62, 57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31, 35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5}; int log2_64 (uint64_t value) { value |= value >> 1; value |= value >> 2; value |= value >> 4; value |= value >> 8; value |= value >> 16; value |= value >> 32; return tab64[((uint64_t)((value - (value >> 1))*0x07EDD5E59A4E28C2)) >> 58]; }
Part of rounding to the next lower power 2 was taken from Strength-2 Borders and part of getting the number of trailing zeros was taken from BitScan (the code (bb & -bb) should select the rightmost bit, which is set to 1, which is not necessary after we rounded the value to the next power 2).
And a 32-bit implementation, by the way,
const int tab32[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31}; int log2_32 (uint32_t value) { value |= value >> 1; value |= value >> 2; value |= value >> 4; value |= value >> 8; value |= value >> 16; return tab32[(uint32_t)(value*0x07C4ACDD) >> 27]; }
As with any other computational method, log2 requires that the input value be greater than zero.