I am trying to add output to my pipeline in NLP using sklearn.
from nltk.stem.snowball import FrenchStemmer stop = stopwords.words('french') stemmer = FrenchStemmer() class StemmedCountVectorizer(CountVectorizer): def __init__(self, stemmer): super(StemmedCountVectorizer, self).__init__() self.stemmer = stemmer def build_analyzer(self): analyzer = super(StemmedCountVectorizer, self).build_analyzer() return lambda doc:(self.stemmer.stem(w) for w in analyzer(doc)) stem_vectorizer = StemmedCountVectorizer(stemmer) text_clf = Pipeline([('vect', stem_vectorizer), ('tfidf', TfidfTransformer()), ('clf', SVC(kernel='linear', C=1)) ])
When using this pipeline with CountVectorizer sklearn, it works. And if I manually create functions like this, this also works.
vectorizer = StemmedCountVectorizer(stemmer) vectorizer.fit_transform(X) tfidf_transformer = TfidfTransformer() X_tfidf = tfidf_transformer.fit_transform(X_counts)
EDIT
If I try this pipeline on my IPython Notebook, it will display [*] and nothing will happen. When I look at my terminal, it gives this error:
Process PoolWorker-12: Traceback (most recent call last): File "C:\Anaconda2\lib\multiprocessing\process.py", line 258, in _bootstrap self.run() File "C:\Anaconda2\lib\multiprocessing\process.py", line 114, in run self._target(*self._args, **self._kwargs) File "C:\Anaconda2\lib\multiprocessing\pool.py", line 102, in worker task = get() File "C:\Anaconda2\lib\site-packages\sklearn\externals\joblib\pool.py", line 360, in get return recv() AttributeError: 'module' object has no attribute 'StemmedCountVectorizer'
Example
Here is a complete example
from sklearn.pipeline import Pipeline from sklearn import grid_search from sklearn.svm import SVC from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from nltk.stem.snowball import FrenchStemmer stemmer = FrenchStemmer() analyzer = CountVectorizer().build_analyzer() def stemming(doc): return (stemmer.stem(w) for w in analyzer(doc)) X = ['le chat est beau', 'le ciel est nuageux', 'les gens sont gentils', 'Paris est magique', 'Marseille est tragique', 'JCVD est fou'] Y = [1,0,1,1,0,0] text_clf = Pipeline([('vect', CountVectorizer()), ('tfidf', TfidfTransformer()), ('clf', SVC())]) parameters = { 'vect__analyzer': ['word', stemming]} gs_clf = grid_search.GridSearchCV(text_clf, parameters, n_jobs=-1) gs_clf.fit(X, Y)
If you remove the output from the parameters, it works differently, it does not work.
UPDATE
The problem is the parallelization process, because when you delete n_jobs = -1, the problem disappears.