I am trying to do a deep academic work. To do this, I first installed all the deep learning packages in my Python environment.
Here is what I did.
In Anaconda, I created an environment called tensorflow as follows
conda create -n tensorflow
Then, Python packages for data science, such as Pandas, NumPy, etc., were installed inside it. I also installed TensorFlow and Keras there. Here is a list of packages in this environment
(tensorflow) SFOM00618927A:dl i854319$ conda list # packages in environment at /Users/i854319/anaconda/envs/tensorflow: # appdirs 1.4.3 <pip> appnope 0.1.0 py36_0 beautifulsoup4 4.5.3 py36_0 bleach 1.5.0 py36_0 cycler 0.10.0 py36_0 decorator 4.0.11 py36_0 entrypoints 0.2.2 py36_1 freetype 2.5.5 2 html5lib 0.999 py36_0 icu 54.1 0 ipykernel 4.5.2 py36_0 ipython 5.3.0 py36_0 ipython_genutils 0.2.0 py36_0 ipywidgets 6.0.0 py36_0 jinja2 2.9.5 py36_0 jsonschema 2.5.1 py36_0 jupyter 1.0.0 py36_3 jupyter_client 5.0.0 py36_0 jupyter_console 5.1.0 py36_0 jupyter_core 4.3.0 py36_0 Keras 2.0.2 <pip> libpng 1.6.27 0 markupsafe 0.23 py36_2 matplotlib 2.0.0 np112py36_0 mistune 0.7.4 py36_0 mkl 2017.0.1 0 nbconvert 5.1.1 py36_0 nbformat 4.3.0 py36_0 notebook 4.4.1 py36_0 numpy 1.12.1 <pip> numpy 1.12.1 py36_0 openssl 1.0.2k 1 packaging 16.8 <pip> pandas 0.19.2 np112py36_1 pandocfilters 1.4.1 py36_0 path.py 10.1 py36_0 pexpect 4.2.1 py36_0 pickleshare 0.7.4 py36_0 pip 9.0.1 py36_1 prompt_toolkit 1.0.13 py36_0 protobuf 3.2.0 <pip> ptyprocess 0.5.1 py36_0 pygments 2.2.0 py36_0 pyparsing 2.1.4 py36_0 pyparsing 2.2.0 <pip> pyqt 5.6.0 py36_2 python 3.6.1 0 python-dateutil 2.6.0 py36_0 pytz 2017.2 py36_0 PyYAML 3.12 <pip> pyzmq 16.0.2 py36_0 qt 5.6.2 0 qtconsole 4.3.0 py36_0 readline 6.2 2 scikit-learn 0.18.1 np112py36_1 scipy 0.19.0 np112py36_0 setuptools 34.3.3 <pip> setuptools 27.2.0 py36_0 simplegeneric 0.8.1 py36_1 sip 4.18 py36_0 six 1.10.0 <pip> six 1.10.0 py36_0 sqlite 3.13.0 0 tensorflow 1.0.1 <pip> terminado 0.6 py36_0 testpath 0.3 py36_0 Theano 0.9.0 <pip> tk 8.5.18 0 tornado 4.4.2 py36_0 traitlets 4.3.2 py36_0 wcwidth 0.1.7 py36_0 wheel 0.29.0 <pip> wheel 0.29.0 py36_0 widgetsnbextension 2.0.0 py36_0 xz 5.2.2 1 zlib 1.2.8 3 (tensorflow) SFOM00618927A:dl i854319$
You can see that jupyter also installed.
Now, when I open the Python interpreter in this environment and run the basic TensorFlow command, everything works fine. However, I wanted to do the same in Jupyter's notebook. So, I created a new directory (outside this environment).
mkdir dl
In this I activated tensorflow
SFOM00618927A:dl i854319$ source activate tensorflow (tensorflow) SFOM00618927A:dl i854319$ conda list
And I can see the same list of packages in this.
Now i open jupyter notebook
SFOM00618927A:dl i854319$ source activate tensorflow (tensorflow) SFOM00618927A:dl i854319$ jupyter notebook
He opens a new notebook in the browser. But when I just import the basic Python libraries like pandas into it, it says "there are no packages available." I am not sure why, when the same environment has all these packages and in the same directory, if I use the Python interpreter, it shows all the packages.
import pandas --------------------------------------------------------------------------- ModuleNotFoundError Traceback (most recent call last) <ipython-input-4-d6ac987968b6> in <module>() ----> 1 import pandas ModuleNotFoundError: No module named 'pandas'
Why doesn't the Jupyter laptop pick up these modules?
So Jupyter laptop does not show env as a translator
