I am trying to implement a sample Tensorflow Object Detection API. I read sentdex to get started. The sample code works fine, it also shows images that are used to test the results, but the borders around the detected objects are not displayed. Just the image of the plane is displayed without errors.
I am using this code: This is a Github link .
This is my result after running the sample code.

another image without any detection.

What am I missing here? The code is included in the link above and there are no error logs.
Results of fields, grades, classes, num in that order.
[[[ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.20880508 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.20934391 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.20880508 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.74907303 0.14624023 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ]]] [[ 0.03587547 0.02224986 0.0186467 0.01096812 0.01003207 0.00654409 0.00633549 0.00534311 0.0049596 0.00410213 0.00362371 0.00339186 0.00308251 0.00303347 0.00293389 0.00277099 0.00269575 0.00266825 0.00263925 0.00263331 0.00258657 0.00240822 0.0022581 0.00186967 0.00184311 0.00180467 0.00177475 0.00173655 0.00172811 0.00171935 0.00171891 0.00170288 0.00163755 0.00162967 0.00160273 0.00156545 0.00153615 0.00140941 0.00132407 0.00131524 0.0013105 0.00129431 0.0012582 0.0012553 0.00122365 0.00119186 0.00115651 0.00115186 0.00112369 0.00107097 0.00105805 0.00104338 0.00102719 0.00102337 0.00100349 0.00097762 0.00096851 0.00092741 0.00088506 0.00087696 0.0008734 0.00084826 0.00084135 0.00083513 0.00083398 0.00082068 0.00080583 0.00078979 0.00078059 0.00077476 0.00075448 0.00074426 0.00074421 0.00070195 0.00068741 0.00068138 0.00067262 0.00067125 0.00067033 0.00066035 0.00064729 0.00064205 0.00061964 0.00061794 0.00060835 0.00060465 0.00059548 0.00059479 0.00059461 0.00059436 0.00059426 0.00059411 0.00059406 0.00059392 0.00059365 0.00059351 0.00059191 0.00058798 0.00058682 0.00058148]] [[ 1. 1. 18. 32. 62. 60. 63. 67. 61. 49. 31. 84. 50. 54. 15. 44. 44. 49. 31. 56. 88. 28. 88. 52. 17. 32. 38. 75. 3. 33. 48. 59. 35. 57. 47. 51. 19. 27. 72. 4. 84. 6. 55. 20. 58. 65. 61. 82. 42. 34. 40. 21. 43. 64. 39. 62. 36. 22. 79. 46. 16. 40. 41. 77. 16. 48. 78. 77. 89. 86. 27. 8. 87. 5. 25. 70. 80. 76. 75. 67. 65. 37. 2. 9. 73. 63. 29. 30. 69. 66. 68. 26. 71. 12. 45. 83. 13. 85. 74. 23.]] [ 100.] [[[ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.68494415 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.68494415 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0.00784111 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.68494415 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.68494415 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.68494415 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.68494415 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.68494415 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.68494415 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0. 1. 1. ] [ 0. 0.68494415 1. 1. ] [ 0. 0.68494415 1. 1. ]]] [[ 0.01044297 0.0098214 0.00942165 0.00846471 0.00613666 0.00398615 0.00357754 0.0030054 0.00255861 0.00236574 0.00232631 0.00220291 0.00185227 0.0016354 0.0015979 0.00145072 0.00143661 0.00141369 0.00122685 0.00118978 0.00108457 0.00104251 0.00099215 0.00096401 0.0008708 0.00084773 0.00080484 0.00078507 0.00078378 0.00076876 0.00072774 0.00071732 0.00071348 0.00070812 0.00069253 0.0006762 0.00067269 0.00059905 0.00059367 0.000588 0.00056114 0.0005504 0.00051472 0.00051057 0.00050973 0.00048486 0.00047297 0.00046204 0.00044787 0.00043259 0.00042987 0.00042673 0.00041978 0.00040494 0.00040087 0.00039576 0.00039059 0.00037274 0.00036831 0.00036417 0.00036119 0.00034645 0.00034479 0.00034078 0.00033771 0.00033605 0.0003333 0.0003304 0.0003294 0.00032326 0.00031787 0.00031773 0.00031748 0.00031741 0.00031732 0.00031729 0.00031724 0.00031722 0.00031717 0.00031708 0.00031702 0.00031579 0.00030416 0.00030222 0.00029739 0.00029726 0.00028289 0.0002653 0.00026325 0.00024584 0.00024221 0.00024156 0.00023911 0.00023335 0.00021619 0.0002001 0.00019127 0.00018342 0.00017273 0.00015509]] [[ 38. 1. 1. 16. 25. 38. 64. 24. 49. 56. 20. 3. 28. 2. 48. 19. 21. 62. 50. 6. 8. 7. 67. 18. 35. 53. 39. 55. 15. 57. 72. 52. 10. 5. 42. 43. 76. 22. 82. 4. 61. 23. 17. 16. 87. 62. 51. 60. 36. 58. 59. 33. 31. 54. 70. 11. 40. 79. 31. 9. 41. 77. 80. 34. 90. 89. 73. 13. 84. 32. 63. 29. 30. 69. 66. 68. 26. 71. 12. 45. 83. 14. 44. 78. 85. 46. 47. 19. 65. 74. 37. 27. 63. 88. 28. 81. 86. 75. 27. 18.]] [ 100.]
EDIT:. According to the suggested answers, it works when we use the model faster_rcnn_resnet101_coco_2017_11_08 . But this is more accurate and why slower. I want this application with high speed, because I'm going to use it in real time (on a webcam). So I need to use a faster model ( ssd_mobilenet_v1_coco_2017_11_08 )
python object-detection tensorflow
Kaushal28
source share