Here is the first part:
library(lubridate) library(dplyr) df2 <- df1 %>% mutate(ym = year(D1)*100+month(D1)) %>% arrange(D1) %>% group_by(D1,ym) %>% summarize(count = n(), sum=sum(Num), mean_num=mean(Num), count_A=sum(type=='A'), sum_A=sum(Num * (type=='A')), count_other=sum(type!='A'), sum_other=sum(Num * (type!='A')), mean_fig = mean(fig), mean_TAT = mean(D2-D1)) %>% group_by(ym) %>% mutate(total_sum=cumsum(count)) %>% ungroup %>% arrange(desc(D1)) %>% select(D1,count,sum,mean_num,total_sum,count_A,sum_A,count_other,sum_other,mean_fig,mean_TAT) # # A tibble: 9 x 11 # D1 count sum mean_num total_sum count_A sum_A count_other sum_other mean_fig mean_TAT # <date> <int> <int> <dbl> <int> <int> <int> <int> <int> <dbl> <time> # 1 2017-05-03 3 95 31.66667 6 0 0 3 95 28.40667 -39.00000 days # 2 2017-05-01 3 55 18.33333 3 2 30 1 25 20.15333 -37.00000 days # 3 2017-04-08 1 20 20.00000 7 1 20 0 0 27.50000 -42.00000 days # 4 2017-04-06 3 85 28.33333 6 2 45 1 40 25.60000 -21.33333 days # 5 2017-04-05 1 20 20.00000 3 0 0 1 20 30.20000 -39.00000 days # 6 2017-04-02 1 15 15.00000 2 1 15 0 0 30.12000 -67.00000 days # 7 2017-04-01 1 50 50.00000 1 1 50 0 0 33.15000 -66.00000 days # 8 2017-03-10 1 40 40.00000 2 1 40 0 0 25.45000 -44.00000 days # 9 2017-03-03 1 15 15.00000 1 0 0 1 15 31.25000 -37.00000 days
<strong> data
df1 <- read.table(text="T_id D1 D2 Num type type_2 fig xt-1 2017-05-01 '2017-03-25 12:11:45' 10 AX 25.20 xt-2 2017-05-01 '2017-03-25 21:05:25' 20 AY 20.15 xt-3 2017-05-01 '2017-03-25 08:10:55' 25 BX 15.11 xt-4 2017-05-03 '2017-03-25 07:19:35' 30 BY 22.56 xt-5 2017-05-03 '2017-03-25 13:12:56' 45 CZ 35.45 xt-6 2017-05-03 '2017-03-25 18:14:44' 20 DZ 27.21 xt-7 2017-04-06 '2017-03-25 19:21:35' 15 AZ 23.20 xt-8 2017-04-06 '2017-03-25 21:11:15' 40 CW 21.40 xt-9 2017-04-08 '2017-02-25 22:25:04' 20 AQ 27.50 xt-10 2017-04-06 '2017-02-25 16:04:08' 30 AW 32.20 xt-11 2017-04-05 '2017-02-25 18:15:25' 20 CV 30.20 xt-12 2017-04-01 '2017-01-25 19:22:25' 50 AZ 33.15 xt-13 2017-04-02 '2017-01-25 23:19:05' 15 AZ 30.12 xt-14 2017-03-03 '2017-01-25 14:25:09' 15 DY 31.25 xt-15 2017-03-10 '2017-01-25 23:25:36' 40 AX 25.45",h=T,strin=F) df1$D1 <- as.Date(df1$D1,"%Y-%m-%d") df1$D2 <- as.Date(df1$D2,"%Y-%m-%d") expected_output <- read.table(text="D1 count sum mean_num total_sum count_A sum_A count_other sum_other mean_fig 2017-05-03 3 95 31.66 6 0 0 3 95 28.40 2017-05-02 0 0 0 3 0 0 0 0 0.00 2017-05-01 3 55 18.33 3 2 30 1 25 20.15")
Some tips for part 2:
I cannot work miracles without processing your questions (providing an accurate reproducible result is more than necessary here). But here is a way to get closer, I hope:
df_month <- df1 %>% mutate(ym = year(D1)*100+month(D1)) %>% arrange(D1) %>% group_by(ym) %>% summarize(count = n(), sum=sum(Num), mean_num=mean(Num), count_A=sum(type=='A'), sum_A=sum(Num * (type=='A')), count_other=sum(type!='A'), sum_other=sum(Num * (type!='A')), mean_fig = mean(fig), mean_TAT = mean(D2-D1)) %>% mutate(type_2=paste0(month.abb[ym%% 100],"-",ym %/% 100 -2000)) %>% select(ym,type_2,count,sum,mean_num,count_A,sum_A,count_other,sum_other,mean_fig,mean_TAT) df_top3 <- df1 %>% filter(type_2 !="A") %>% mutate(ym = year(D1)*100+month(D1)) %>% arrange(desc(ym)) %>% group_by(ym,type_2) %>% summarize(count = n(), sum=sum(Num), mean_num=mean(Num), count_A=sum(type=='A'), sum_A=sum(Num * (type=='A')), count_other=sum(type!='A'), sum_other=sum(Num * (type!='A')), mean_fig = mean(fig), mean_TAT = mean(D2-D1)) %>% group_by(ym) %>% arrange(desc(count)) %>% slice(1:3) %>% ungroup %>% select(ym,type_2,count,sum,mean_num,count_A,sum_A,count_other,sum_other,mean_fig,mean_TAT) df_A <- df1 %>% filter(type_2 == "A") %>% mutate(ym = year(D1)*100+month(D1)) %>% arrange(desc(ym)) %>% group_by(ym,type_2) %>% summarize(count = n(), sum=sum(Num), mean_num=mean(Num), count_A=sum(type=='A'), sum_A=sum(Num * (type=='A')), count_other=sum(type!='A'), sum_other=sum(Num * (type!='A')), mean_fig = mean(fig), mean_TAT = mean(D2-D1)) %>% select(ym,type_2,count,sum,mean_num,count_A,sum_A,count_other,sum_other,mean_fig,mean_TAT) df_other <- df1 %>% mutate(ym = year(D1)*100+month(D1)) %>% anti_join(bind_rows(df_top3,df_A),by = c("ym","type_2")) %>% mutate(type_2="Other") %>% arrange(desc(ym)) %>% group_by(ym,type_2) %>% summarize(count = n(), sum=sum(Num), mean_num=mean(Num), count_A=sum(type=='A'), sum_A=sum(Num * (type=='A')), count_other=sum(type!='A'), sum_other=sum(Num * (type!='A')), mean_fig = mean(fig), mean_TAT = mean(D2-D1)) %>% select(ym,type_2,count,sum,mean_num,count_A,sum_A,count_other,sum_other,mean_fig,mean_TAT) # it empty with your example data bind_rows(df_month,df_top3,df_A,df_other) %>% arrange(ym) %>% select(-ym) %>% rename(Month = type_2)