I have a strange situation with scipy.stats.linregress, it seems to return the wrong standard error:
from scipy import stats x = [5.05, 6.75, 3.21, 2.66] y = [1.65, 26.5, -5.93, 7.96] gradient, intercept, r_value, p_value, std_err = stats.linregress(x,y) >>> gradient 5.3935773611970186 >>> intercept -16.281127993087829 >>> r_value 0.72443514211849758 >>> r_value**2 0.52480627513624778 >>> std_err 3.6290901222878866
While Excel returns the following:
slope: 5.394 intercept: -16.281 rsq: 0.525 steyX: 11.696
steyX is a standard excel error function returning 11.696 against scipy 3.63. Does anyone know what is going on here? Any alternative way to get a standard regression error in python without switching to Rpy?
python scipy regression
Thomas browne
source share