You need to get them yourself using existing functions, for example. Math.sin
You may find this useful:
Secant Sec(X) = 1 / Cos(X) Cosecant Cosec(X) = 1 / Sin(X) Cotangent Cotan(X) = 1 / Tan(X) Inverse Sine Arcsin(X) = Atn(X / Sqr(-X * X + 1)) Inverse Cosine Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1) Inverse Secant Arcsec(X) = 2 * Atn(1) - Atn(Sgn(X) / Sqr(X * X - 1)) Inverse Cosecant Arccosec(X) = Atn(Sgn(X) / Sqr(X * X - 1)) Inverse Cotangent Arccotan(X) = 2 * Atn(1) - Atn(X) Hyperbolic Sine HSin(X) = (Exp(X) - Exp(-X)) / 2 Hyperbolic Cosine HCos(X) = (Exp(X) + Exp(-X)) / 2 Hyperbolic Tangent HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X)) Hyperbolic Secant HSec(X) = 2 / (Exp(X) + Exp(-X)) Hyperbolic Cosecant HCosec(X) = 2 / (Exp(X) - Exp(-X)) Hyperbolic Cotangent HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X)) Inverse Hyperbolic Sine HArcsin(X) = Log(X + Sqr(X * X + 1)) Inverse Hyperbolic Cosine HArccos(X) = Log(X + Sqr(X * X - 1)) Inverse Hyperbolic Tangent HArctan(X) = Log((1 + X) / (1 - X)) / 2 Inverse Hyperbolic Secant HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X) Inverse Hyperbolic Cosecant HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X) Inverse Hyperbolic Cotangent HArccotan(X) = Log((X + 1) / (X - 1)) / 2 Logarithm to base N LogN(X) = Log(X) / Log(N)
Robben_Ford_Fan_boy
source share