After your notation in the question, you use independent normal increments to plot the angle, and then use it as the direction for the next size step.
Block[{size=0.5}, Graphics[ Line[Accumulate[ Function[x, size*{Re[x], Im[x]}, Listable][ Exp[I Accumulate[ RandomVariate[NormalDistribution[0, Pi/4], 10^3]]]]]] ]]
EDIT . This is a response to G. Haraโs request for visualization of a random walk on a Robinson sphere projection.
RandomRobinsonWalk[coords_List] := Show[CountryData["World", {"Shape", "Robinson"}], Graphics[{Thick, Red, Line[Map[ GeoGridPosition[ GeoPosition[#], "Robinson"][[1]] & , coords]]}], Frame -> True]
The random walk on a sphere is generated as follows:
Coordinates[{\[Theta]_, \[Phi]_}, {cosa_, sina_}, \[CapitalDelta]\[Theta]_] := {ArcCos[ Cos[\[CapitalDelta]\[Theta]] Cos[\[Theta]] - cosa Sin[\[CapitalDelta]\[Theta]] Sin[\[Theta]]], ArcTan[cosa Cos[\[Theta]] Cos[\[Phi]] Sin[\[CapitalDelta]\[Theta]] \ + Cos[\[CapitalDelta]\[Theta]] Cos[\[Phi]] Sin[\[Theta]] + sina Sin[\[CapitalDelta]\[Theta]] Sin[\[Phi]], (cosa \ Cos[\[Theta]] Sin[\[CapitalDelta]\[Theta]] + Cos[\[CapitalDelta]\[Theta]] Sin[\[Theta]]) Sin[\[Phi]] - Cos[\[Phi]] sina Sin[\[CapitalDelta]\[Theta]]]}; Clear[SphereRandomWalk]; SphereRandomWalk[ipos_, steps_, stepsize_, prec_: MachinePrecision] := FoldList[Function[{up, cossin}, Coordinates[up, cossin, stepsize]], ipos, Function[u, {Re[u], Im[u]}, Listable][ Exp[I RandomVariate[UniformDistribution[{-Pi, Pi}], steps]]]]
The formula used to obtain the following pair {\[Theta], \[Phi}
was obtained as follows:
Expand[Simplify[((RotationMatrix[\[Alpha], {Sin[\[Theta]] Sin[\[Phi]], Sin[\[Theta]] Cos[\[Phi]], Cos[\[Theta]]}].({Sin[\[Theta]] Sin[\[Phi]], Sin[\[Theta]] Cos[\[Phi]], Cos[\[Theta]]} /. {\[Theta] -> \[Theta] + \[CapitalDelta]\ \[Theta]}))) /. {Conjugate -> Identity} /. {Abs[x_]^2 :> x^2}]]
that is, rotate a fixed size in [Theta], and then rotate a random angle \[Alpha]
around the previous vector.
Using:
((