I played with the (beautiful) polynomial x^4 - 10x^2 + 1
. See what happens:
In[46]:= f[x_] := x^4 - 10x^2 + 1 a = Sqrt[2]; b = Sqrt[3]; Simplify[f[ a + b]] Simplify[f[ a - b]] Simplify[f[-a + b]] Simplify[f[-a - b]] Out[49]= 0 Out[50]= 0 Out[51]= 0 Out[52]= 0 In[53]:= Solve[f[x] == 0, x] Out[53]= {{x->-Sqrt[5-2 Sqrt[6]]},{x->Sqrt[5-2 Sqrt[6]]},{x->-Sqrt[5+2 Sqrt[6]]},{x->Sqrt[5+2 Sqrt[6]]}} In[54]:= Simplify[Solve[f[x] == 0, x]] Out[54]= {{x->-Sqrt[5-2 Sqrt[6]]},{x->Sqrt[5-2 Sqrt[6]]},{x->-Sqrt[5+2 Sqrt[6]]},{x->Sqrt[5+2 Sqrt[6]]}} In[55]:= FullSimplify[Solve[f[x] == 0, x]] Out[55]= {{x->Sqrt[2]-Sqrt[3]},{x->Sqrt[5-2 Sqrt[6]]},{x->-Sqrt[5+2 Sqrt[6]]},{x->Sqrt[2]+Sqrt[3]}}
Sqrt[5-2 Sqrt[6]]
is equal to Sqrt[3]-Sqrt[2]
.
However, Mathematica FullSimplify
does not simplify Sqrt[5-2 Sqrt[6]]
.
Question: Should I use other more specialized functions to algebraically solve the equation? If so, which one?
nilo de roock
source share