How to properly enable ambiguities when fitting with python

I am trying to set some data points with y uncertainties in python. Data is marked in python as x, y and yerr. I need to do a linear binding to this log-wide data. As a reference, if the matching results are correct, I compare the python results with the results from Scidavis

I tried curve_fit with

def func(x, a, b): return np.exp(a* np.log(x)+np.log(b)) popt, pcov = curve_fit(func, x, y,sigma=yerr) 

as well as kmpfit with

 def funcL(p, x): a,b = p return ( np.exp(a*np.log(x)+np.log(b)) ) def residualsL(p, data): a,b=p x, y, errorfit = data return (y-funcL(p,x)) / errorfit a0=1 b0=0.1 p0 = [a0,b0] fitterL = kmpfit.Fitter(residuals=residualsL, data=(x,y,yerr)) fitterL.parinfo = [{}, {}] fitterL.fit(params0=p0) 

and when I try to match the data with one of them without uncertainties (e.g. yerr = 1), everything works very well and the results are identical to the results from scidavis. But if I set yerr to data file uncertainty, I get some disturbing results. In python, I get a = 0.86 and in scidavis a = 0.14. I read something about errors being included as weights. Do I need to change something to correctly calculate the fit? Or what am I doing wrong?

edit: here is an example data file (x, y, yerr)

 3.942387e-02 1.987800e+00 5.513165e-01 6.623142e-02 7.126161e+00 1.425232e+00 9.348280e-02 1.238530e+01 1.536208e+00 1.353088e-01 1.090471e+01 7.829126e-01 2.028446e-01 1.023087e+01 3.839575e-01 3.058446e-01 8.403626e+00 1.756866e-01 4.584524e-01 7.345275e+00 8.442288e-02 6.879677e-01 6.128521e+00 3.847194e-02 1.032592e+00 5.359025e+00 1.837428e-02 1.549152e+00 5.380514e+00 1.007010e-02 2.323985e+00 6.404229e+00 6.534108e-03 3.355974e+00 9.489101e+00 6.342546e-03 4.384128e+00 1.497998e+01 2.273233e-02 

and the result:

 in python: without uncertainties: a=0.06216 +/- 0.00650 ; b=8.53594 +/- 1.13985 with uncertainties: a=0.86051 +/- 0.01640 ; b=3.38081 +/- 0.22667 in scidavis: without uncertainties: a = 0.06216 +/- 0.08060; b = 8.53594 +/- 1.06763 with uncertainties: a = 0.14154 +/- 0.005731; b = 7.38213 +/- 2.13653 
+7
source share
1 answer

I have to misunderstand something. Your published data does not look like

 f(x,a,b) = np.exp(a*np.log(x)+np.log(b)) 

The red line is the result of scipy.optimize.curve_fit , the green line is the result of scidavis.

I assume that no algorithm converges to a good fit, so it is not surprising that the results do not match.


I can’t explain how scidavis finds its parameters, but according to the definitions, as I understand them, scipy finds parameters with the remnants of the least squares than scidavis :

 import numpy as np import matplotlib.pyplot as plt import scipy.optimize as optimize def func(x, a, b): return np.exp(a* np.log(x)+np.log(b)) def sum_square(residuals): return (residuals**2).sum() def residuals(p, x, y, sigma): return 1.0/sigma*(y - func(x, *p)) data = np.loadtxt('test.dat').reshape((-1,3)) x, y, yerr = np.rollaxis(data, axis = 1) sigma = yerr popt, pcov = optimize.curve_fit(func, x, y, sigma = sigma, maxfev = 10000) print('popt: {p}'.format(p = popt)) scidavis = (0.14154, 7.38213) print('scidavis: {p}'.format(p = scidavis)) print('''\ sum of squares for scipy: {sp} sum of squares for scidavis: {d} '''.format( sp = sum_square(residuals(popt, x = x, y = y, sigma = sigma)), d = sum_square(residuals(scidavis, x = x, y = y, sigma = sigma)) )) plt.plot(x, y, 'bo', x, func(x,*popt), 'r-', x, func(x, *scidavis), 'g-') plt.errorbar(x, y, yerr) plt.show() 

gives

 popt: [ 0.86051258 3.38081125] scidavis: (0.14154, 7.38213) sum of squares for scipy: 53249.9915654 sum of squares for scidavis: 239654.84276 

enter image description here

+3
source

All Articles