I am new to pandas and I am trying to read a weird formatted file in a DataFrame. The original file is as follows:
; No Time Date MoistAve MatTemp TDRConduct TDRAve DeltaCount tpAve Moist1 Moist2 Moist3 Moist4 TDR1 TDR2 TDR3 TDR4 1 11:38:17 11.07.2012 11.37 48.20 5.15 88.87 15 344.50 11.84 11.35 11.59 15.25 89.0 89.0 89.0 88.0 2 11:38:18 11.07.2012 11.44 48.20 5.13 88.88 2 346.22 12.08 11.83 -1.00 -1.00 89.0 89.0 -1.0 -1.0 3 11:38:19 11.07.2012 11.10 48.20 4.96 89.00 3 337.84 11.83 11.59 10.62 -1.00 89.0 89.0 89.0 -1.0 4 11:38:19 11.07.2012 11.82 48.20 5.54 88.60 3 355.92 11.10 13.54 12.32 -1.00 89.0 88.0 88.0 -1.0
I managed to get an equally structured DataFrame with:
In [42]: date_spec = {'FetchTime': [1, 2]} In [43]: df = pd.read_csv('MeasureCK32450-20120711114050.mck', header=7, sep='\s\s+', parse_dates=date_spec, na_values=['-1.0', '-1.00']) In [44]: df Out[52]: FetchTime ; No MoistAve MatTemp TDRConduct TDRAve DeltaCount tpAve Moist1 Moist2 Moist3 Moist4 TDR1 TDR2 TDR3 TDR4 0 2012-11-07 11:38:17 1 11.37 48.2 5.15 88.87 15 344.50 11.84 11.35 11.59 15.25 89 89 89 88 1 2012-11-07 11:38:18 2 11.44 48.2 5.13 88.88 2 346.22 12.08 11.83 NaN NaN 89 89 NaN NaN 2 2012-11-07 11:38:19 3 11.10 48.2 4.96 89.00 3 337.84 11.83 11.59 10.62 NaN 89 89 89 NaN 3 2012-11-07 11:38:19 4 11.82 48.2 5.54 88.60 3 355.92 11.10 13.54 12.32 NaN 89 88 88 NaN
But now I need to expand each row of this DataFrame
.... Moist1 Moist2 Moist3 Moist4 TDR1 TDR2 TDR3 TDR4 1 .... 11.84 11.35 11.59 15.25 89 89 89 88 2 .... 12.08 11.83 NaN NaN 89 89 NaN NaN
in four lines (with three indexes No, FetchTime and MeasureNo):
.... Moist TDR No FetchTime MeasureNo 0 2012-11-07 11:38:17 1 .... 11.84 89 # from line 1, Moist1 and TDR1 1 2 .... 11.35 89 # from line 1, Moist2 and TDR2 2 3 .... 11.59 89 # from line 1, Moist3 and TDR3 3 4 .... 15.25 88 # from line 1, Moist4 and TDR4 4 2012-11-07 11:38:18 1 .... 12.08 89 # from line 2, Moist1 and TDR1 5 2 .... 11.83 89 # from line 2, Moist2 and TDR2 6 3 .... NaN NaN # from line 2, Moist3 and TDR3 7 4 .... NaN NaN # from line 2, Moist4 and TDR4
keeping the rest of the columns and MOST important, keeping order of records. I know that I can for row in df.iterrows(): ... over each row using for row in df.iterrows(): ... but I read that it is not very fast. My first approach was as follows:
In [54]: data = [] In [55]: for d in range(1,5): ....: temp = df.ix[:, ['FetchTime', 'MoistAve', 'MatTemp', 'TDRConduct', 'TDRAve', 'DeltaCount', 'tpAve', 'Moist%d' % d, 'TDR%d' % d]] ....: temp.columns = ['FetchTime', 'MoistAve', 'MatTemp', 'TDRConduct', 'TDRAve', 'DeltaCount', 'tpAve', 'RawMoist', 'RawTDR'] ....: temp['MeasureNo'] = d ....: data.append(temp) ....: In [56]: test = pd.concat(data, ignore_index=True) In [62]: test.head() Out[62]: FetchTime MoistAve MatTemp TDRConduct TDRAve DeltaCount tpAve RawMoist RawTDR MeasureNo 0 2012-11-07 11:38:17 11.37 48.2 5.15 88.87 15 344.50 11.84 89 1 1 2012-11-07 11:38:18 11.44 48.2 5.13 88.88 2 346.22 12.08 89 1 2 2012-11-07 11:38:19 11.10 48.2 4.96 89.00 3 337.84 11.83 89 1 3 2012-11-07 11:38:19 11.82 48.2 5.54 88.60 3 355.92 11.10 89 1 4 2012-11-07 11:38:20 12.61 48.2 5.87 88.38 3 375.72 12.80 89 1
But I donβt see a way to influence the concatenation to get the order I need ... Is there any other way to get the received DataFrame that I need?