pandas DataFrame has a to_html method:
import numpy as np import pandas as pd num = np.array([[ 0.17899619, 0.33093259, 0.2076353, 0.06130814,], [ 0.20392888, 0.42653105, 0.33325891, 0.10473969,], [ 0.17038247, 0.19081956, 0.10119709, 0.09032416,], [-0.10606583, -0.13680513, -0.13129103, -0.03684349,], [ 0.20319428, 0.28340985, 0.20994867, 0.11728491,], [ 0.04396872, 0.23703525, 0.09359683, 0.11486036,], [ 0.27801304, -0.05769304, -0.06202813, 0.04722761,],]) days = ['5 days', '10 days', '20 days', '60 days'] prices = ['AAPL', 'ADBE', 'AMD', 'AMZN', 'CRM', 'EXPE', 'FB'] df = pd.DataFrame(num, index=prices, columns=days) html = df.to_html() print html
Output:
<table border="1" class="dataframe"> <thead> <tr style="text-align: right;"> <th></th> <th>5 days</th> <th>10 days</th> <th>20 days</th> <th>60 days</th> </tr> </thead> <tbody> <tr> <th>AAPL</th> <td> 0.178996</td> <td> 0.330933</td> <td> 0.207635</td> <td> 0.061308</td> </tr> <tr> <th>ADBE</th> <td> 0.203929</td> <td> 0.426531</td> <td> 0.333259</td> <td> 0.104740</td> </tr> <tr> <th>AMD</th> <td> 0.170382</td> <td> 0.190820</td> <td> 0.101197</td> <td> 0.090324</td> </tr> <tr> <th>AMZN</th> <td>-0.106066</td> <td>-0.136805</td> <td>-0.131291</td> <td>-0.036843</td> </tr> <tr> <th>CRM</th> <td> 0.203194</td> <td> 0.283410</td> <td> 0.209949</td> <td> 0.117285</td> </tr> <tr> <th>EXPE</th> <td> 0.043969</td> <td> 0.237035</td> <td> 0.093597</td> <td> 0.114860</td> </tr> <tr> <th>FB</th> <td> 0.278013</td> <td>-0.057693</td> <td>-0.062028</td> <td> 0.047228</td> </tr> </tbody> </table>