Consider this code. I am not familiar with the INTEL version, but it is faster than the XMMatrixMultiply found in DirectX. It's not about how much math is done for each instruction, but about reducing the number of instructions (if you use quick instructions, what does this implementation do).
// Perform a 4x4 matrix multiply by a 4x4 matrix // Be sure to run in 64 bit mode and set right flags // Properties, C/C++, Enable Enhanced Instruction, /arch:AVX // Having MATRIX on a 32 byte bundry does help performance struct MATRIX { union { float f[4][4]; __m128 m[4]; __m256 n[2]; }; }; MATRIX myMultiply(MATRIX M1, MATRIX M2) { MATRIX mResult; __m256 a0, a1, b0, b1; __m256 c0, c1, c2, c3, c4, c5, c6, c7; __m256 t0, t1, u0, u1; t0 = M1.n[0]; // t0 = a00, a01, a02, a03, a10, a11, a12, a13 t1 = M1.n[1]; // t1 = a20, a21, a22, a23, a30, a31, a32, a33 u0 = M2.n[0]; // u0 = b00, b01, b02, b03, b10, b11, b12, b13 u1 = M2.n[1]; // u1 = b20, b21, b22, b23, b30, b31, b32, b33 a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(0, 0, 0, 0)); // a0 = a00, a00, a00, a00, a10, a10, a10, a10 a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(0, 0, 0, 0)); // a1 = a20, a20, a20, a20, a30, a30, a30, a30 b0 = _mm256_permute2f128_ps(u0, u0, 0x00); // b0 = b00, b01, b02, b03, b00, b01, b02, b03 c0 = _mm256_mul_ps(a0, b0); // c0 = a00*b00 a00*b01 a00*b02 a00*b03 a10*b00 a10*b01 a10*b02 a10*b03 c1 = _mm256_mul_ps(a1, b0); // c1 = a20*b00 a20*b01 a20*b02 a20*b03 a30*b00 a30*b01 a30*b02 a30*b03 a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(1, 1, 1, 1)); // a0 = a01, a01, a01, a01, a11, a11, a11, a11 a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(1, 1, 1, 1)); // a1 = a21, a21, a21, a21, a31, a31, a31, a31 b0 = _mm256_permute2f128_ps(u0, u0, 0x11); // b0 = b10, b11, b12, b13, b10, b11, b12, b13 c2 = _mm256_mul_ps(a0, b0); // c2 = a01*b10 a01*b11 a01*b12 a01*b13 a11*b10 a11*b11 a11*b12 a11*b13 c3 = _mm256_mul_ps(a1, b0); // c3 = a21*b10 a21*b11 a21*b12 a21*b13 a31*b10 a31*b11 a31*b12 a31*b13 a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(2, 2, 2, 2)); // a0 = a02, a02, a02, a02, a12, a12, a12, a12 a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(2, 2, 2, 2)); // a1 = a22, a22, a22, a22, a32, a32, a32, a32 b1 = _mm256_permute2f128_ps(u1, u1, 0x00); // b0 = b20, b21, b22, b23, b20, b21, b22, b23 c4 = _mm256_mul_ps(a0, b1); // c4 = a02*b20 a02*b21 a02*b22 a02*b23 a12*b20 a12*b21 a12*b22 a12*b23 c5 = _mm256_mul_ps(a1, b1); // c5 = a22*b20 a22*b21 a22*b22 a22*b23 a32*b20 a32*b21 a32*b22 a32*b23 a0 = _mm256_shuffle_ps(t0, t0, _MM_SHUFFLE(3, 3, 3, 3)); // a0 = a03, a03, a03, a03, a13, a13, a13, a13 a1 = _mm256_shuffle_ps(t1, t1, _MM_SHUFFLE(3, 3, 3, 3)); // a1 = a23, a23, a23, a23, a33, a33, a33, a33 b1 = _mm256_permute2f128_ps(u1, u1, 0x11); // b0 = b30, b31, b32, b33, b30, b31, b32, b33 c6 = _mm256_mul_ps(a0, b1); // c6 = a03*b30 a03*b31 a03*b32 a03*b33 a13*b30 a13*b31 a13*b32 a13*b33 c7 = _mm256_mul_ps(a1, b1); // c7 = a23*b30 a23*b31 a23*b32 a23*b33 a33*b30 a33*b31 a33*b32 a33*b33 c0 = _mm256_add_ps(c0, c2); // c0 = c0 + c2 (two terms, first two rows) c4 = _mm256_add_ps(c4, c6); // c4 = c4 + c6 (the other two terms, first two rows) c1 = _mm256_add_ps(c1, c3); // c1 = c1 + c3 (two terms, second two rows) c5 = _mm256_add_ps(c5, c7); // c5 = c5 + c7 (the other two terms, second two rose) // Finally complete addition of all four terms and return the results mResult.n[0] = _mm256_add_ps(c0, c4); // n0 = a00*b00+a01*b10+a02*b20+a03*b30 a00*b01+a01*b11+a02*b21+a03*b31 a00*b02+a01*b12+a02*b22+a03*b32 a00*b03+a01*b13+a02*b23+a03*b33 // a10*b00+a11*b10+a12*b20+a13*b30 a10*b01+a11*b11+a12*b21+a13*b31 a10*b02+a11*b12+a12*b22+a13*b32 a10*b03+a11*b13+a12*b23+a13*b33 mResult.n[1] = _mm256_add_ps(c1, c5); // n1 = a20*b00+a21*b10+a22*b20+a23*b30 a20*b01+a21*b11+a22*b21+a23*b31 a20*b02+a21*b12+a22*b22+a23*b32 a20*b03+a21*b13+a22*b23+a23*b33 // a30*b00+a31*b10+a32*b20+a33*b30 a30*b01+a31*b11+a32*b21+a33*b31 a30*b02+a31*b12+a32*b22+a33*b32 a30*b03+a31*b13+a32*b23+a33*b33 return mResult; }