Yes, something like this:
update is a version with a color bar.
import numpy as np from pylab import * from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt def randrange(n, vmin, vmax): return (vmax-vmin)*np.random.rand(n) + vmin fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111,projection='3d') n = 100 xs = randrange(n, 23, 32) ys = randrange(n, 0, 100) zs = randrange(n, 0, 100) colmap = cm.ScalarMappable(cmap=cm.hsv) colmap.set_array(zs) yg = ax.scatter(xs, ys, zs, c=cm.hsv(zs/max(zs)), marker='o') cb = fig.colorbar(colmap) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show()
as follows:

update Here is a clear example of coloring your data points using the 4th dimension attribute.
import numpy as np from pylab import * from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt def randrange(n, vmin, vmax): return (vmax-vmin)*np.random.rand(n) + vmin fig = plt.figure(figsize=(8,6)) ax = fig.add_subplot(111,projection='3d') n = 100 xs = randrange(n, 0, 100) ys = randrange(n, 0, 100) zs = randrange(n, 0, 100) the_fourth_dimension = randrange(n,0,100) colors = cm.hsv(the_fourth_dimension/max(the_fourth_dimension)) colmap = cm.ScalarMappable(cmap=cm.hsv) colmap.set_array(the_fourth_dimension) yg = ax.scatter(xs, ys, zs, c=colors, marker='o') cb = fig.colorbar(colmap) ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show()

seth
source share