We spend most of our processor cycles on operations with small matrices, so I wondered if it was possible to optimize for this case. Consider the following code:
module Main where import Numeric.LinearAlgebra.HMatrix import Criterion.Main data Matrix2x2 = Matrix2x2 {-# UNPACK #-} !Double !Double !Double !Double mul2x2p :: Matrix2x2 -> Matrix2x2 -> Matrix2x2 mul2x2p (Matrix2x2 a1 b1 c1 d1) (Matrix2x2 a2 b2 c2 d2) = Matrix2x2 (a1*a2 + b1*c2) (a1*b2 + b1*d2) (c1*a2 + d1*c2) (c1*b2 + d1*d2) inv2x2 :: Matrix2x2 -> Matrix2x2 inv2x2 (Matrix2x2 abcd) = let detInv = a * d - b * c in Matrix2x2 (d / detInv) (-b / detInv) (-c / detInv) (a / detInv) add2x2 (Matrix2x2 a1 b1 c1 d1) (Matrix2x2 a2 b2 c2 d2) = Matrix2x2 (a1+a2) (b1+b2) (c1+c2) (d1+d2) hm1 = matrix 2 [1, 2, 3, 4] hm2 = matrix 2 [5, 6, 7, 8] pm1 = Matrix2x2 1 2 3 4 pm2 = Matrix2x2 5 6 7 8 main = defaultMain [ bgroup "matrix tests" [ bench "pure mult" $ whnf (mul2x2p pm1) pm2 , bench "hmatrix mult" $ whnf (hm1 <>) hm2 , bench "pure add" $ whnf (add2x2 pm1) pm2 , bench "hmatrix add" $ whnf (hm1 +) hm2 , bench "pure inv" $ whnf inv2x2 pm1 , bench "hmatrix inv" $ whnf inv hm1 ]]
Results:
benchmarking matrix tests/pure mult time 6.461 ns (6.368 ns .. 6.553 ns) 0.999 R² (0.998 R² .. 0.999 R²) mean 6.482 ns (6.394 ns .. 6.594 ns) std dev 345.1 ps (271.4 ps .. 477.3 ps) variance introduced by outliers: 77% (severely inflated) benchmarking matrix tests/hmatrix mult time 180.6 ns (178.2 ns .. 183.1 ns) 0.999 R² (0.998 R² .. 0.999 R²) mean 183.0 ns (180.6 ns .. 186.3 ns) std dev 9.363 ns (7.405 ns .. 12.73 ns) variance introduced by outliers: 71% (severely inflated) benchmarking matrix tests/pure add time 6.262 ns (6.223 ns .. 6.297 ns) 0.999 R² (0.999 R² .. 1.000 R²) mean 6.281 ns (6.220 ns .. 6.355 ns) std dev 235.0 ps (183.3 ps .. 321.0 ps) variance introduced by outliers: 62% (severely inflated) benchmarking matrix tests/hmatrix add time 116.4 ns (115.0 ns .. 117.9 ns) 0.999 R² (0.998 R² .. 0.999 R²) mean 116.3 ns (115.2 ns .. 117.7 ns) std dev 4.176 ns (3.447 ns .. 5.150 ns) variance introduced by outliers: 55% (severely inflated) benchmarking matrix tests/pure inv time 7.811 ns (7.718 ns .. 7.931 ns) 0.999 R² (0.998 R² .. 0.999 R²) mean 7.895 ns (7.808 ns .. 7.988 ns) std dev 296.4 ps (247.2 ps .. 358.3 ps) variance introduced by outliers: 62% (severely inflated) benchmarking matrix tests/hmatrix inv time 908.5 ns (901.3 ns .. 916.6 ns) 0.999 R² (0.998 R² .. 0.999 R²) mean 934.0 ns (917.6 ns .. 961.3 ns) std dev 73.92 ns (50.53 ns .. 108.6 ns) variance introduced by outliers: 84% (severely inflated)
My questions:
1) Is the speed real or due to an artifact with a reference process?
2) If the speed up is real, is there an existing library that will handle, say, 1x1, 2x2, 3x3, 4x4 matrices as special cases?
3) If not, what is the best way to wrap the HMatrix so that we can take the fast track when the matrix is small? ghc can decompress entries with only one constructor. Is there a way to automatically generate different versions of our code, etc.
Example-test.cabal:
name: example-test version: 0.1.0.0 build-type: Simple cabal-version: >=1.10 executable example-test main-is: Main.hs build-depends: base >=4.7 && <4.8, criterion, hmatrix default-language: Haskell2010 ghc-options: -H12G -O3 -optc-O3 -fllvm -rtsopts -threaded -fexcess-precision -j6 +RTS -N6 -RTS -fno-ignore-asserts -fcontext-stack=150 -- -fforce-recomp
performance matrix haskell
yong
source share