#include <utility> #include <tuple> #include <cstddef> struct arg { template <typename Arg1> static constexpr decltype(auto) apply(Arg1&& arg1) { return std::forward<Arg1>(arg1); } static constexpr std::size_t arity = 1; }; template <typename Type, Type value> struct constant { static constexpr decltype(auto) apply() { return value; } static constexpr std::size_t arity = 0; }; template <typename Lhs, typename Rhs> struct plus { template <typename... Args> static constexpr decltype(auto) apply(Args&&... args) { return _apply(std::make_index_sequence<Lhs::arity>{}, std::make_index_sequence<Rhs::arity>{}, std::tuple<Args&&...>(std::forward<Args>(args)...)); } template <typename Tuple, std::size_t... Arity1, std::size_t... Arity2> static constexpr decltype(auto) _apply(std::index_sequence<Arity1...>, std::index_sequence<Arity2...>, Tuple&& args) { return Lhs::apply(static_cast<typename std::tuple_element<Arity1, Tuple>::type>(std::get<Arity1>(args))...) + Rhs::apply(static_cast<typename std::tuple_element<Lhs::arity + Arity2, Tuple>::type>(std::get<Lhs::arity + Arity2>(args))...); } static constexpr std::size_t arity = Lhs::arity + Rhs::arity; }; template <typename Lhs, typename Rhs> struct multiply { template <typename... Args> static constexpr decltype(auto) apply(Args&&... args) { return _apply(std::make_index_sequence<Lhs::arity>{}, std::make_index_sequence<Rhs::arity>{}, std::tuple<Args&&...>(std::forward<Args>(args)...)); } template <typename Tuple, std::size_t... Arity1, std::size_t... Arity2> static constexpr decltype(auto) _apply(std::index_sequence<Arity1...>, std::index_sequence<Arity2...>, Tuple&& args) { return Lhs::apply(static_cast<typename std::tuple_element<Arity1, Tuple>::type>(std::get<Arity1>(args))...) * Rhs::apply(static_cast<typename std::tuple_element<Lhs::arity + Arity2, Tuple>::type>(std::get<Lhs::arity + Arity2>(args))...); } static constexpr std::size_t arity = Lhs::arity + Rhs::arity; };
Test:
int main() { // (1 + 2) + 3 = 6 std::cout << plus<plus<arg, arg>, arg>::apply(1, 2, 3) << std::endl; // (a + 5) + (2 * 6) = 9 + 12 = 21 int a = 4; std::cout << plus<plus<arg, arg>, multiply<arg, constant<int, 6>>>::apply(a, 5, 2) << std::endl; // ((1 * 2) * 3) * 4 = 24 std::cout << multiply<multiply<multiply<arg, arg>, arg>, arg>::apply(1, 2, 3, 4) << std::endl; // 2 + (4 * 5) = 22 static_assert(plus<arg, multiply<arg, arg>>::apply(2, 4, 5) == 22, "!"); }
Output:
6 21 24
Demo 1
The above solution can be improved, so introducing new functors requires less effort, and the declarations themselves are more readable, for example, below:
#include <iostream> #include <utility> #include <tuple> #include <cstddef> template <std::size_t Arity> struct expression { static constexpr std::size_t arity = Arity; }; template <typename Expr, typename Rhs> struct unary_expression : expression<Rhs::arity> { template <typename... Args> static constexpr decltype(auto) apply(Args&&... args) { static_assert(sizeof...(Args) == unary_expression::arity, "Wrong number of operands!"); return Expr::eval(Rhs::apply(std::forward<Args>(args)...)); } }; template <typename Expr, typename Lhs, typename Rhs> struct binary_expression : expression<Lhs::arity + Rhs::arity> { template <typename... Args> static constexpr decltype(auto) apply(Args&&... args) { static_assert(sizeof...(Args) == binary_expression::arity, "Wrong number of operands!"); return _apply(std::make_index_sequence<Lhs::arity>{}, std::make_index_sequence<Rhs::arity>{}, std::tuple<Args&&...>(std::forward<Args>(args)...)); } template <typename Tuple, std::size_t... Arity1, std::size_t... Arity2> static constexpr decltype(auto) _apply(std::index_sequence<Arity1...>, std::index_sequence<Arity2...>, Tuple&& args) { return Expr::eval(Lhs::apply(static_cast<typename std::tuple_element<Arity1, Tuple>::type>(std::get<Arity1>(args))...), Rhs::apply(static_cast<typename std::tuple_element<Lhs::arity + Arity2, Tuple>::type>(std::get<Lhs::arity + Arity2>(args))...)); } }; struct arg : expression<1> { template <typename Arg1> static constexpr decltype(auto) apply(Arg1&& arg1) { return std::forward<Arg1>(arg1); } }; template <typename Type, Type value> struct constant : expression<0> { static constexpr decltype(auto) apply() { return value; } }; template <typename Rhs> struct negate : unary_expression<negate<Rhs>, Rhs> { template <typename Arg1> static constexpr decltype(auto) eval(Arg1&& arg1) { return -std::forward<Arg1>(arg1); } }; template <typename Lhs, typename Rhs> struct plus : binary_expression<plus<Lhs, Rhs>, Lhs, Rhs> { template <typename Arg1, typename Arg2> static constexpr decltype(auto) eval(Arg1&& arg1, Arg2&& arg2) { return std::forward<Arg1>(arg1) + std::forward<Arg2>(arg2); } }; template <typename Lhs, typename Rhs> struct minus : binary_expression<minus<Lhs, Rhs>, Lhs, Rhs> { template <typename Arg1, typename Arg2> static constexpr decltype(auto) eval(Arg1&& arg1, Arg2&& arg2) { return std::forward<Arg1>(arg1) - std::forward<Arg2>(arg2); } }; template <typename Lhs, typename Rhs> struct multiply : binary_expression<multiply<Lhs, Rhs>, Lhs, Rhs> { template <typename Arg1, typename Arg2> static constexpr decltype(auto) eval(Arg1&& arg1, Arg2&& arg2) { return std::forward<Arg1>(arg1) * std::forward<Arg2>(arg2); } }; int main() { // (1 + 2) + 3 = 6 std::cout << plus<plus<arg, arg>, arg>::apply(1, 2, 3) << std::endl; // ((a + 5) + (2 * 6)) - 5 = 16 int a = 4; std::cout << minus<plus<plus<arg, arg>, multiply<arg, constant<int, 6>>>, constant<int, 5>>::apply(a, 5, 2) << std::endl; // ((1 * 2) * 3) * 4 = 24 std::cout << multiply<multiply<multiply<arg, arg>, arg>, arg>::apply(1, 2, 3, 4) << std::endl; // -((3 * 4) + (5 - 6)) = -11 static_assert(negate<plus<multiply<arg, arg>, minus<arg, arg>>>::apply(3, 4, 5, 6) == -11, "!"); }
Demo 2