[Edit] There is not yet mentioned another solution, and it seems to be superior to the others that have been given so far in most cases.
Use string.translate to replace all valid characters in a string and see if we still have invalid characters. This is pretty fast, as it uses the basic C function to do the job, with the python small bytecode involved.
Obviously, performance is not everything: for the most readable solutions, it is probably the best approach when it’s not in the critical code, but just to see how the solutions add up, the performance of all the proposed methods is compared here, check_trans is the one which uses the string.translate method.
Test code:
import string, re, timeit pat = re.compile('[\w-]*$') pat_inv = re.compile ('[^\w-]') allowed_chars=string.ascii_letters + string.digits + '_-' allowed_set = set(allowed_chars) trans_table = string.maketrans('','') def check_set_diff(s): return not set(s) - allowed_set def check_set_all(s): return all(x in allowed_set for x in s) def check_set_subset(s): return set(s).issubset(allowed_set) def check_re_match(s): return pat.match(s) def check_re_inverse(s): # Search for non-matching character. return not pat_inv.search(s) def check_trans(s): return not s.translate(trans_table,allowed_chars) test_long_almost_valid='a_very_long_string_that_is_mostly_valid_except_for_last_char'*99 + '!' test_long_valid='a_very_long_string_that_is_completely_valid_' * 99 test_short_valid='short_valid_string' test_short_invalid='/$%$%&' test_long_invalid='/$%$%&' * 99 test_empty='' def main(): funcs = sorted(f for f in globals() if f.startswith('check_')) tests = sorted(f for f in globals() if f.startswith('test_')) for test in tests: print "Test %-15s (length = %d):" % (test, len(globals()[test])) for func in funcs: print " %-20s : %.3f" % (func, timeit.Timer('%s(%s)' % (func, test), 'from __main__ import pat,allowed_set,%s' % ','.join(funcs+tests)).timeit(10000)) print if __name__=='__main__': main()
My system results:
Test test_empty (length = 0): check_re_inverse : 0.042 check_re_match : 0.030 check_set_all : 0.027 check_set_diff : 0.029 check_set_subset : 0.029 check_trans : 0.014 Test test_long_almost_valid (length = 5941): check_re_inverse : 2.690 check_re_match : 3.037 check_set_all : 18.860 check_set_diff : 2.905 check_set_subset : 2.903 check_trans : 0.182 Test test_long_invalid (length = 594): check_re_inverse : 0.017 check_re_match : 0.015 check_set_all : 0.044 check_set_diff : 0.311 check_set_subset : 0.308 check_trans : 0.034 Test test_long_valid (length = 4356): check_re_inverse : 1.890 check_re_match : 1.010 check_set_all : 14.411 check_set_diff : 2.101 check_set_subset : 2.333 check_trans : 0.140 Test test_short_invalid (length = 6): check_re_inverse : 0.017 check_re_match : 0.019 check_set_all : 0.044 check_set_diff : 0.032 check_set_subset : 0.037 check_trans : 0.015 Test test_short_valid (length = 18): check_re_inverse : 0.125 check_re_match : 0.066 check_set_all : 0.104 check_set_diff : 0.051 check_set_subset : 0.046 check_trans : 0.017
In most cases, the translation approach looks best, which is very important with long valid strings, but is beaten out with regular expressions in test_long_invalid (presumably because the regular expression can help out right away, but you always have to scan the entire string to translate). The established approaches are usually the worst, beating regular expressions only for the case of an empty string.
Using all (x in the allowed_set for x in s) works well if it is issued earlier, but can be bad if it needs to go through each character. isSubSet and the given differences are comparable and are consistently proportional to the length of the string regardless of the data.
There is a similar difference between regular expression methods matching all valid characters and finding invalid characters. The comparison is a little better when checking for a long but fully valid string, but worse for invalid characters at the end of the string.