Using dplyr , you can do:
library(dplyr) setDF(data) %>% rowwise() %>% mutate(max = max(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width)) #Source: local data frame [10 x 5] #Groups: <by row> # # Sepal.Length Sepal.Width Petal.Length Petal.Width max #1 5.1 3.5 1.4 0.2 5.1 #2 4.9 3.0 1.4 0.2 4.9 #3 4.7 3.2 1.3 0.2 4.7 #4 4.6 3.1 1.5 0.2 4.6 #5 5.0 3.6 1.4 0.2 5.0 #6 5.4 3.9 1.7 0.4 5.4
Or as @akrun suggested:
setDF(data) %>% mutate(max=pmax(Sepal.Length, Sepal.Width, Petal.Length, Petal.Width))
This is much faster than the rowwise() approach:
n <- 10e6; nc <- 4; DT <- data.table(replicate(nc,rnorm(n))) mbm <- microbenchmark( steven = DT %>% rowwise() %>% mutate(V5 = max(V1, V2, V3, V4)), frank = DT[,c(.SD,list(do.call(pmax,.SD)))], akrun = DT %>% mutate(V5 = pmax(V1, V2, V3, V4)), times = 25, unit = "relative")

#Unit: relative # expr min lq mean median uq max neval cld # steven 17.93647 18.024734 17.535764 17.42948 17.484920 16.446384 25 b # frank 1.00000 1.000000 1.000000 1.00000 1.000000 1.000000 25 a # akrun 1.00220 1.002281 1.013604 1.00240 1.003089 1.001262 25 a
Steven beaupré
source share