Using the NLTK StanfordParser, I can parse the sentence as follows:
os.environ['STANFORD_PARSER'] = 'C:\jars' os.environ['STANFORD_MODELS'] = 'C:\jars' os.environ['JAVAHOME'] ='C:\ProgramData\Oracle\Java\javapath' parser = stanford.StanfordParser(model_path="C:\jars\englishPCFG.ser.gz") sentences = parser.parse(("bring me a red ball",)) for sentence in sentences: sentence
Result:
Tree('ROOT', [Tree('S', [Tree('VP', [Tree('VB', ['Bring']), Tree('NP', [Tree('DT', ['a']), Tree('NN', ['red'])]), Tree('NP', [Tree('NN', ['ball'])])]), Tree('.', ['.'])])])
How can I use the Stanford parser to get typed dependencies in addition to the above chart? Something like:
- root (ROOT-0, bring-1)
- iobj (bring-1, me-2)
- det (ball-5, a-3)
- amod (ball-5, red-4)
- dobj (bring-1, ball-5)
python parsing nlp nltk stanford-nlp
Yarik
source share