Starting with version 0.24.0 for pandas, .to_flat_index() is the "official" way for pandas to do what is written on the label: MultiIndex alignment.
It also has an added advantage over existing answers such as .reset_index(level=[0,1]) , since it is versatile enough to apply to both the row and the MultiIndex column .
From panda own documentation:
MultiIndex.to_flat_index ()
Convert MultiIndex to a tuple index containing level values.
A simple example from its documentation:
import pandas as pd print(pd.__version__) # '0.23.4' index = pd.MultiIndex.from_product( [['foo', 'bar'], ['baz', 'qux']], names=['a', 'b']) print(index) # MultiIndex(levels=[['bar', 'foo'], ['baz', 'qux']], # codes=[[1, 1, 0, 0], [0, 1, 0, 1]], # names=['a', 'b']) Applying to_flat_index(): index.to_flat_index() # Index([('foo', 'baz'), ('foo', 'qux'), ('bar', 'baz'), ('bar', 'qux')], dtype='object')
Using it to replace an existing pandas column works basically the same as an index:
dat = df.loc[:,['name','workshop_period','class_size']].groupby(['name','workshop_period']).describe() print(dat.columns) # MultiIndex(levels=[['class_size'], ['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']], # codes=[[0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 2, 3, 4, 5, 6, 7]]) dat.columns = dat.columns.to_flat_index() print(dat.columns) # Index([('class_size', 'count'), ('class_size', 'mean'), # ('class_size', 'std'), ('class_size', 'min'), # ('class_size', '25%'), ('class_size', '50%'), # ('class_size', '75%'), ('class_size', 'max')], # dtype='object')