I tried the program for training SVM with sklearn. Here is the code
from sklearn import svm from sklearn import datasets from sklearn.externals import joblib clf = svm.SVC() iris = datasets.load_iris() X, y = iris.data, iris.target clf.fit(X, y) print(clf.predict(X)) joblib.dump(clf, 'clf.pkl')
When I delete the model file, I get this number of files.
['clf.pkl', 'clf.pkl_01.npy', 'clf.pkl_02.npy', 'clf.pkl_03.npy', 'clf.pkl_04.npy', 'clf.pkl_05.npy', 'clf. pkl_06.npy ',' clf.pkl_07.npy ',' clf.pkl_08.npy ',' clf.pkl_09.npy ',' clf.pkl_10.npy ',' clf.pkl_11.npy ']
I am embarrassed if I did something wrong. Or is this normal? What are * .npy files. And why is there 11?
python scikit-learn machine-learning joblib
kcc__
source share