Here is an example showing how you can use numpy.linalg.lstsq for this task:
import numpy as np x = np.linspace(0, 1, 20) y = np.linspace(0, 1, 20) X, Y = np.meshgrid(x, y, copy=False) Z = X**2 + Y**2 + np.random.rand(*X.shape)*0.01 X = X.flatten() Y = Y.flatten() A = np.array([X*0+1, X, Y, X**2, X**2*Y, X**2*Y**2, Y**2, X*Y**2, X*Y]).T B = Z.flatten() coeff, r, rank, s = np.linalg.lstsq(A, B)
correction coefficients coeff :
array([ 0.00423365, 0.00224748, 0.00193344, 0.9982576 , -0.00594063, 0.00834339, 0.99803901, -0.00536561, 0.00286598])
Note that coeff[3] and coeff[6] respectively correspond to X**2 and Y**2 , and they are close to 1. because sample data was created using Z = X**2 + Y**2 + small_random_component .
Saullo GP Castro
source share