Using the data.table package, I would approach it as follows:
library(data.table) # method 1: setDT(cc)[, `:=` (rn = 1:.N, wm = which.max(rowMeans(.SD))), a][rn==wm] # method 2: setDT(cc)[, wm := frank(1/rowMeans(.SD), ties.method="first"), a][wm==1]
which gives:
a X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 wm rn 1: 1 13.946254 7.302729 9.406389 8.924367 8.129423 10.174735 6.547805 11.618872 12.84100 9.494790 3 3 2: 2 13.606555 12.798149 11.261258 12.991822 12.875935 11.199411 8.551149 10.377451 13.63219 13.643163 2 2 3: 3 6.820769 13.748507 11.630297 11.559873 6.196406 8.925419 11.230415 10.584249 10.41442 6.821673 1 1 4: 4 8.418767 10.673998 6.693021 11.101287 7.855519 9.106210 12.279536 6.925023 6.92334 10.279204 1 1 5: 5 11.529072 7.940031 10.746172 8.535466 13.703122 12.294424 11.362498 11.256843 13.95535 13.264835 1 1
In the R database, you can do:
cc$rm <- apply(cc[,-1], 1, mean) cc$wm <- ave(cc$rm, cc$a, FUN = function(x) max(x)==x) cc[cc$wm == 1,]
which gives:
a X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 rm wm 3 1 13.946254 7.302729 9.406389 8.924367 8.129423 10.174735 6.547805 11.618872 12.84100 9.494790 9.838637 1 6 2 13.606555 12.798149 11.261258 12.991822 12.875935 11.199411 8.551149 10.377451 13.63219 13.643163 12.093708 1 7 3 6.820769 13.748507 11.630297 11.559873 6.196406 8.925419 11.230415 10.584249 10.41442 6.821673 9.793203 1 9 4 8.418767 10.673998 6.693021 11.101287 7.855519 9.106210 12.279536 6.925023 6.92334 10.279204 9.025591 1 10 5 11.529072 7.940031 10.746172 8.535466 13.703122 12.294424 11.362498 11.256843 13.95535 13.264835 11.458781 1
In response to your comment: Alternatively, you can use the rank function inside ave :
# duplicate the row for which 'max(x)==x' for the first group cc <- rbind(cc,cc[3,]) cc$wm2 <- ave(cc$rm, cc$a, FUN = function(x) rank(-x, ties.method = "first")) cc[cc$wm2 == 1,]
which gives:
a X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 rm wm wm2 3 1 13.946254 7.302729 9.406389 8.924367 8.129423 10.174735 6.547805 11.618872 12.84100 9.494790 9.838637 1 1 6 2 13.606555 12.798149 11.261258 12.991822 12.875935 11.199411 8.551149 10.377451 13.63219 13.643163 12.093708 1 1 7 3 6.820769 13.748507 11.630297 11.559873 6.196406 8.925419 11.230415 10.584249 10.41442 6.821673 9.793203 1 1 9 4 8.418767 10.673998 6.693021 11.101287 7.855519 9.106210 12.279536 6.925023 6.92334 10.279204 9.025591 1 1 10 5 11.529072 7.940031 10.746172 8.535466 13.703122 12.294424 11.362498 11.256843 13.95535 13.264835 11.458781 1 1
NOTE. I renamed the dataframe to cc , since it is better not to use the function name as the name for your data frame