If I have a Scala paragraph with a DataFrame, I can share and use it with python. (As far as I understand, pyspark uses py4j )
I tried this:
Scala:
x.printSchema z.put("xtable", x )
Python item:
%pyspark import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns the_data = z.get("xtable") print the_data sns.set() g = sns.PairGrid(data=the_data, x_vars=dependent_var, y_vars=sensor_measure_columns_names + operational_settings_columns_names, hue="UnitNumber", size=3, aspect=2.5) g = g.map(plt.plot, alpha=0.5) g = g.set(xlim=(300,0)) g = g.add_legend()
Mistake:
Traceback (most recent call last): File "/tmp/zeppelin_pyspark.py", line 222, in <module> eval(compiledCode) File "<string>", line 15, in <module> File "/usr/local/lib/python2.7/dist-packages/seaborn/axisgrid.py", line 1223, in __init__ hue_names = utils.categorical_order(data[hue], hue_order) TypeError: 'JavaObject' object has no attribute '__getitem__'
Decision:
%pyspark import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import StringIO def show(p): img = StringIO.StringIO() p.savefig(img, format='svg') img.seek(0) print "%html <div style='width:600px'>" + img.buf + "</div>" df = sqlContext.table("fd").select() df.printSchema pdf = df.toPandas() g = sns.pairplot(data=pdf, x_vars=["setting1","setting2"], y_vars=["s4", "s3", "s9", "s8", "s13", "s6"], hue="id", aspect=2) show(g)

python apache-spark pyspark apache-zeppelin
oluies
source share