I tried applying PCA to my data and then applying RandomForest to the converted data. However, PCA.transform (data) gave me a DataFrame, but I need mllib LabeledPoints to feed my RandomForest. How can i do this? My code is:
import org.apache.spark.mllib.util.MLUtils import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.mllib.tree.RandomForest import org.apache.spark.mllib.tree.model.RandomForestModel import org.apache.spark.ml.feature.PCA import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.mllib.linalg.Vectors val dataset = MLUtils.loadLibSVMFile(sc, "data/mnist/mnist.bz2") val splits = dataset.randomSplit(Array(0.7, 0.3)) val (trainingData, testData) = (splits(0), splits(1)) val trainingDf = trainingData.toDF() val pca = new PCA() .setInputCol("features") .setOutputCol("pcaFeatures") .setK(100) .fit(trainingDf) val pcaTrainingData = pca.transform(trainingDf) val numClasses = 10 val categoricalFeaturesInfo = Map[Int, Int]() val numTrees = 10
I tried the following two possible solutions, but they did not work:
scala> val pcaTrainingData = trainingData.map(p => p.copy(features = pca.transform(p.features))) <console>:39: error: overloaded method value transform with alternatives: (dataset: org.apache.spark.sql.DataFrame)org.apache.spark.sql.DataFrame <and> (dataset: org.apache.spark.sql.DataFrame,paramMap: org.apache.spark.ml.param.ParamMap)org.apache.spark.sql.DataFrame <and> (dataset: org.apache.spark.sql.DataFrame,firstParamPair: org.apache.spark.ml.param.ParamPair[_],otherParamPairs: org.apache.spark.ml.param.ParamPair[_]*)org.apache.spark.sql.DataFrame cannot be applied to (org.apache.spark.mllib.linalg.Vector)
and
val labeled = pca .transform(trainingDf) .map(row => LabeledPoint(row.getDouble(0), row(4).asInstanceOf[Vector[Int]])) error: type mismatch; found : scala.collection.immutable.Vector[Int] required: org.apache.spark.mllib.linalg.Vector
(I imported the file org.apache.spark.mllib.linalg.Vectors in the above case)
Any help?
scala pca apache-spark rdd apache-spark-mllib
Tianyi wang
source share