Reverse column A, take cumsum, then again again:
df['C'] = df.ix[::-1, 'A'].cumsum()[::-1]
import pandas as pd df = pd.DataFrame( {'A': [False, True, False, False, False, True, False, True], 'B': [0.03771, 0.315414, 0.33248, 0.445505, 0.580156, 0.741551, 0.796944, 0.817563],}, index=[6, 2, 4, 7, 3, 1, 5, 0]) df['C'] = df.ix[::-1, 'A'].cumsum()[::-1] print(df)
gives
ABC 6 False 0.037710 3 2 True 0.315414 3 4 False 0.332480 2 7 False 0.445505 2 3 False 0.580156 2 1 True 0.741551 2 5 False 0.796944 1 0 True 0.817563 1
Alternatively, you can count the amount of True in column A and subtract the (offset) cumsum:
In [113]: df['A'].sum()-df['A'].shift(1).fillna(0).cumsum() Out[113]: 6 3 2 3 4 2 7 2 3 2 1 2 5 1 0 1 Name: A, dtype: object
But it is much slower. Using IPython to run the test:
In [116]: df = pd.DataFrame({'A':np.random.randint(2, size=10**5).astype(bool)}) In [117]: %timeit df['A'].sum()-df['A'].shift(1).fillna(0).cumsum() 10 loops, best of 3: 19.8 ms per loop In [118]: %timeit df.ix[::-1, 'A'].cumsum()[::-1] 1000 loops, best of 3: 701 Β΅s per loop