Another alternative is to use the heat map function in the seabed to build covariance. This example uses the Auto dataset from the ISLR package in R (the same as the example you showed).
import pandas.rpy.common as com import seaborn as sns %matplotlib inline

If you want to be even more bizarre, you can use Pandas Style , for example:
cmap = cmap=sns.diverging_palette(5, 250, as_cmap=True) def magnify(): return [dict(selector="th", props=[("font-size", "7pt")]), dict(selector="td", props=[('padding', "0em 0em")]), dict(selector="th:hover", props=[("font-size", "12pt")]), dict(selector="tr:hover td:hover", props=[('max-width', '200px'), ('font-size', '12pt')]) ] corr.style.background_gradient(cmap, axis=1)\ .set_properties(**{'max-width': '80px', 'font-size': '10pt'})\ .set_caption("Hover to magify")\ .set_precision(2)\ .set_table_styles(magnify())

mrandrewandrade
source share