I want to use the output attachment of the word 2vec, for example, in this document (Improving the ranking of documents with double word inserts) .
I know that the input vectors are in syn0, the output vectors are in syn1 and syn1neg if the selection is negative.
But when I calculated most_similar with the output vector, I got the same result in some ranges due to the removal of syn1 or syn1neg.
Here is what I got.
IN[1]: model = Word2Vec.load('test_model.model') IN[2]: model.most_similar([model.syn1neg[0]]) OUT[2]: [('of', -0.04402521997690201), ('has', -0.16387106478214264), ('in', -0.16650712490081787), ('is', -0.18117375671863556), ('by', -0.2527652978897095), ('was', -0.254993200302124), ('from', -0.2659570872783661), ('the', -0.26878535747528076), ('on', -0.27521973848342896), ('his', -0.2930959463119507)]
but another syn1neg numpy vector already looks like an output.
IN[3]: model.most_similar([model.syn1neg[50]]) OUT[3]: [('of', -0.07884830236434937), ('has', -0.16942456364631653), ('the', -0.1771494299173355), ('his', -0.2043554037809372), ('is', -0.23265135288238525), ('in', -0.24725285172462463), ('by', -0.27772971987724304), ('was', -0.2979024648666382), ('time', -0.3547973036766052), ('he', -0.36455872654914856)]
I want to get numpy output arrays (negative or not) with those stored during training.
Let me know how I can access pure syn1 or syn1neg or code, or some kind of word2vec module can get the output attachment.