I want to build the output of this simple neural network:
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) history = model.fit(x_test, y_test, nb_epoch=10, validation_split=0.2, shuffle=True) model.test_on_batch(x_test, y_test) model.metrics_names
I built accuracy and loss of training and verification:
print(history.history.keys()) # "Accuracy" plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show() # "Loss" plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show()
Now I want to add and set the accuracy of the test model.test_on_batch(x_test, y_test) from model.test_on_batch(x_test, y_test) , but from model.metrics_names I get the same value "acc" that is used to build the accuracy of the training data plt.plot(history.history['acc']) . How can I adjust the accuracy of the test suite?
keras
Simone
source share