I do a kernel density estimate in Python and get the paths and paths as shown below. (here is my data: https://pastebin.com/193PUhQf ).
from numpy import * from math import * import numpy as np import matplotlib.pyplot as plt from scipy import stats x_2d = [] y_2d = [] data = {} data['nodes'] = [] # here is the sample data: # https://pastebin.com/193PUhQf X = [.....] for Picker in xrange(0, len(X)): x_2d.append(X[Picker][0]) y_2d.append(X[Picker][1]) # convert to arrays m1 = np.array([x_2d]) m2 = np.array([y_2d]) x_min = m1.min() - 30 x_max = m1.max() + 30 y_min = m2.min() - 30 y_max = m2.max() + 30 x, y = np.mgrid[x_min:x_max:200j, y_min:y_max:200j] positions = np.vstack([x.ravel(), y.ravel()]) values = np.vstack([m1, m2]) kde = stats.gaussian_kde(values) z = np.reshape(kde(positions).T, x.shape) fig = plt.figure(2, dpi=200) ax = fig.add_subplot(111) pc = ax.pcolor(x, y, z) cb = plt.colorbar(pc) cb.ax.set_ylabel('Probability density') c_s = plt.contour(x, y, z, 20, linewidths=1, colors='k') ax.plot(m1, m2, 'o', mfc='w', mec='k') ax.set_title("My Title", fontsize='medium') plt.savefig("kde.png", dpi=200) plt.show()
There is a similar way to get outlines using R, which is described here: http://bl.ocks.org/diegovalle/5166482
Question: how can I achieve the same result using my python script or as a starting point? the desired result should look like contours_tj.json , which can be used by leaflet.js lib.
UPDATE:
My input structure consists of three columns separated by commas:
- first is the value of X
- the second is the value of Y
- The third is the identifier of my data, it has no numerical value, it is simply the identifier of the data point.
Update 2:
The question, if you just put it, is that I want to get the same result as in the link above using my input file, which is in the numpy array format.
update 3:
my input structure is a list type:
print type(X) <type 'list'>
and here are the first few lines:
print X[0:5] [[10.800584, 11.446064, 4478597], [10.576840,11.020229, 4644503], [11.434276,10.790881, 5570870], [11.156718,11.034633, 6500333], [11.054956,11.100243, 6513301]]