This is from SQL Server, and I'm using Haversine for a ridiculously fast distance that could suffer from your problem in Alaska (maybe shut down by a mile):
ALTER function [dbo].[getCoordinateDistance] ( @Latitude1 decimal(16,12), @Longitude1 decimal(16,12), @Latitude2 decimal(16,12), @Longitude2 decimal(16,12) ) returns decimal(16,12) as /* fUNCTION: getCoordinateDistance Computes the Great Circle distance in kilometers between two points on the Earth using the Haversine formula distance calculation. Input Parameters: @Longitude1 - Longitude in degrees of point 1 @Latitude1 - Latitude in degrees of point 1 @Longitude2 - Longitude in degrees of point 2 @Latitude2 - Latitude in degrees of point 2 */ begin declare @radius decimal(16,12) declare @lon1 decimal(16,12) declare @lon2 decimal(16,12) declare @lat1 decimal(16,12) declare @lat2 decimal(16,12) declare @a decimal(16,12) declare @distance decimal(16,12) -- Sets average radius of Earth in Kilometers set @radius = 6366.70701949371 -- Convert degrees to radians set @lon1 = radians( @Longitude1 ) set @lon2 = radians( @Longitude2 ) set @lat1 = radians( @Latitude1 ) set @lat2 = radians( @Latitude2 ) set @a = sqrt(square(sin((@ lat2-@lat1 )/2.0E)) + (cos(@lat1) * cos(@lat2) * square(sin((@ lon2-@lon1 )/2.0E))) ) set @distance = @radius * ( 2.0E *asin(case when 1.0E < @a then 1.0E else @a end ) ) return @distance end
Vicenty is slow but accurate to 1 mm (and I only found javascript imp):
/* * Calculate geodesic distance (in m) between two points specified by latitude/longitude (in numeric degrees) * using Vincenty inverse formula for ellipsoids */ function distVincenty(lat1, lon1, lat2, lon2) { var a = 6378137, b = 6356752.3142, f = 1/298.257223563; // WGS-84 ellipsiod var L = (lon2-lon1).toRad(); var U1 = Math.atan((1-f) * Math.tan(lat1.toRad())); var U2 = Math.atan((1-f) * Math.tan(lat2.toRad())); var sinU1 = Math.sin(U1), cosU1 = Math.cos(U1); var sinU2 = Math.sin(U2), cosU2 = Math.cos(U2); var lambda = L, lambdaP = 2*Math.PI; var iterLimit = 20; while (Math.abs(lambda-lambdaP) > 1e-12 && --iterLimit>0) { var sinLambda = Math.sin(lambda), cosLambda = Math.cos(lambda); var sinSigma = Math.sqrt((cosU2*sinLambda) * (cosU2*sinLambda) + (cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda)); if (sinSigma==0) return 0; // co-incident points var cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda; var sigma = Math.atan2(sinSigma, cosSigma); var sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma; var cosSqAlpha = 1 - sinAlpha*sinAlpha; var cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha; if (isNaN(cos2SigmaM)) cos2SigmaM = 0; // equatorial line: cosSqAlpha=0 (ยง6) var C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha)); lambdaP = lambda; lambda = L + (1-C) * f * sinAlpha * (sigma + C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM))); } if (iterLimit==0) return NaN // formula failed to converge var uSq = cosSqAlpha * (a*a - b*b) / (b*b); var A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq))); var B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq))); var deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)- B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM))); var s = b*A*(sigma-deltaSigma); s = s.toFixed(3); // round to 1mm precision return s; }
nathaniel
source share