Use RFC2898 to generate keys from passwords. This is not part of the JRE or JCE, as far as I know, but it is included in J2EE servers such as JBoss , Oracle, and WebSphere . It is also included in the .NET base class library ( Rfc2898DeriveBytes ).
There are some LGPL implementations in Java, but with a quick look this one looks a bit more complicated. There is also a good version of javascript . (I produced a modified version of this and packaged it as a component of Windows Script
Not having a good implementation with the appropriate license, I packed some code from Mattias Gartner. This is the whole code. Short, simple, clear. It is licensed under the MS Public License .
// PBKDF2.java // ------------------------------------------------------------------ // // RFC2898 PBKDF2 in Java. The RFC2898 defines a standard algorithm for // deriving key bytes from a text password. This is sometimes // abbreviated "PBKDF2", for Password-based key derivation function #2. // // There no RFC2898-compliant PBKDF2 function in the JRE, as far as I // know, but it is available in many J2EE runtimes, including those from // JBoss, IBM, and Oracle. // // It fairly simple to implement, so here it is. // // Created Sun Aug 09 01:06:57 2009 // // last saved: // Time-stamp: <2009-August-09 02:19:50> // ------------------------------------------------------------------ // // code thanks to Matthias Gartner // // ------------------------------------------------------------------ package cheeso.examples; import java.security.NoSuchAlgorithmException; import java.security.InvalidKeyException; import javax.crypto.Mac; import javax.crypto.spec.SecretKeySpec; public class PBKDF2 { public static byte[] deriveKey( byte[] password, byte[] salt, int iterationCount, int dkLen ) throws java.security.NoSuchAlgorithmException, java.security.InvalidKeyException { SecretKeySpec keyspec = new SecretKeySpec( password, "HmacSHA1" ); Mac prf = Mac.getInstance( "HmacSHA1" ); prf.init( keyspec ); // Note: hLen, dkLen, l, r, T, F, etc. are horrible names for // variables and functions in this day and age, but they // reflect the terse symbols used in RFC 2898 to describe // the PBKDF2 algorithm, which improves validation of the // code vs. the RFC. // // dklen is expressed in bytes. (16 for a 128-bit key) int hLen = prf.getMacLength(); // 20 for SHA1 int l = Math.max( dkLen, hLen); // 1 for 128bit (16-byte) keys int r = dkLen - (l-1)*hLen; // 16 for 128bit (16-byte) keys byte T[] = new byte[l * hLen]; int ti_offset = 0; for (int i = 1; i <= l; i++) { F( T, ti_offset, prf, salt, iterationCount, i ); ti_offset += hLen; } if (r < hLen) { // Incomplete last block byte DK[] = new byte[dkLen]; System.arraycopy(T, 0, DK, 0, dkLen); return DK; } return T; } private static void F( byte[] dest, int offset, Mac prf, byte[] S, int c, int blockIndex ) { final int hLen = prf.getMacLength(); byte U_r[] = new byte[ hLen ]; // U0 = S || INT (i); byte U_i[] = new byte[S.length + 4]; System.arraycopy( S, 0, U_i, 0, S.length ); INT( U_i, S.length, blockIndex ); for( int i = 0; i < c; i++ ) { U_i = prf.doFinal( U_i ); xor( U_r, U_i ); } System.arraycopy( U_r, 0, dest, offset, hLen ); } private static void xor( byte[] dest, byte[] src ) { for( int i = 0; i < dest.length; i++ ) { dest[i] ^= src[i]; } } private static void INT( byte[] dest, int offset, int i ) { dest[offset + 0] = (byte) (i / (256 * 256 * 256)); dest[offset + 1] = (byte) (i / (256 * 256)); dest[offset + 2] = (byte) (i / (256)); dest[offset + 3] = (byte) (i); } // ctor private PBKDF2 () {} }