You can do it faster according to this.
#define SUBP(i,j) input[i][j] #define SUBQ(i,j) input[i][2+j] #define SUBR(i,j) input[2+i][j] #define SUBS(i,j) input[2+i][2+j] #define OUTP(i,j) output[i][j] #define OUTQ(i,j) output[i][2+j] #define OUTR(i,j) output[2+i][j] #define OUTS(i,j) output[2+i][2+j] #define INVP(i,j) invP[i][j] #define INVPQ(i,j) invPQ[i][j] #define RINVP(i,j) RinvP[i][j] #define INVPQ(i,j) invPQ[i][j] #define RINVPQ(i,j) RinvPQ[i][j] #define INVPQR(i,j) invPQR[i][j] #define INVS(i,j) invS[i][j] #define MULTI(MAT1, MAT2, MAT3) \ MAT3(0,0)=MAT1(0,0)*MAT2(0,0) + MAT1(0,1)*MAT2(1,0); \ MAT3(0,1)=MAT1(0,0)*MAT2(0,1) + MAT1(0,1)*MAT2(1,1); \ MAT3(1,0)=MAT1(1,0)*MAT2(0,0) + MAT1(1,1)*MAT2(1,0); \ MAT3(1,1)=MAT1(1,0)*MAT2(0,1) + MAT1(1,1)*MAT2(1,1); #define INV(MAT1, MAT2) \ _det = 1.0 / (MAT1(0,0) * MAT1(1,1) - MAT1(0,1) * MAT1(1,0)); \ MAT2(0,0) = MAT1(1,1) * _det; \ MAT2(1,1) = MAT1(0,0) * _det; \ MAT2(0,1) = -MAT1(0,1) * _det; \ MAT2(1,0) = -MAT1(1,0) * _det; \ #define SUBTRACT(MAT1, MAT2, MAT3) \ MAT3(0,0)=MAT1(0,0) - MAT2(0,0); \ MAT3(0,1)=MAT1(0,1) - MAT2(0,1); \ MAT3(1,0)=MAT1(1,0) - MAT2(1,0); \ MAT3(1,1)=MAT1(1,1) - MAT2(1,1); #define NEGATIVE(MAT) \ MAT(0,0)=-MAT(0,0); \ MAT(0,1)=-MAT(0,1); \ MAT(1,0)=-MAT(1,0); \ MAT(1,1)=-MAT(1,1); void getInvertMatrix(complex<double> input[4][4], complex<double> output[4][4]) { complex<double> _det; complex<double> invP[2][2]; complex<double> invPQ[2][2]; complex<double> RinvP[2][2]; complex<double> RinvPQ[2][2]; complex<double> invPQR[2][2]; complex<double> invS[2][2]; INV(SUBP, INVP); MULTI(SUBR, INVP, RINVP); MULTI(INVP, SUBQ, INVPQ); MULTI(RINVP, SUBQ, RINVPQ); SUBTRACT(SUBS, RINVPQ, INVS); INV(INVS, OUTS); NEGATIVE(OUTS); MULTI(OUTS, RINVP, OUTR); MULTI(INVPQ, OUTS, OUTQ); MULTI(INVPQ, OUTR, INVPQR); SUBTRACT(INVP, INVPQR, OUTP); }
This is not a complete implementation, because P cannot be reversible, but you can combine this code with the MESA implementation to get better performance.