Suppose I have a pandas DataFrame:
>>> df = pd.DataFrame({'id':[1,1,1,2,2,2,2,3,4],'value':[1,2,3,1,2,3,4,1,1]}) >>> df id value 0 1 1 1 1 2 2 1 3 3 2 1 4 2 2 5 2 3 6 2 4 7 3 1 8 4 1
I want to get a new DataFrame with top 2 records for each id, for example:
id value 0 1 1 1 1 2 3 2 1 4 2 2 7 3 1 8 4 1
I can do this by numbering the entries in the group after the group:
>>> dfN = df.groupby('id').apply(lambda x:x['value'].reset_index()).reset_index() >>> dfN id level_1 index value 0 1 0 0 1 1 1 1 1 2 2 1 2 2 3 3 2 0 3 1 4 2 1 4 2 5 2 2 5 3 6 2 3 6 4 7 3 0 7 1 8 4 0 8 1 >>> dfN[dfN['level_1'] <= 1][['id', 'value']] id value 0 1 1 1 1 2 3 2 1 4 2 2 7 3 1 8 4 1
But is there a more efficient / elegant approach for this? There is also a more elegant approach to numerical entries in each group (for example, the SQL window function row_number () ).
Thanks in advance.
python pandas greatest-n-per-group window-functions
Roman Pekar Nov 19 '13 at 10:28 2013-11-19 10:28
source share